To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new lig...To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.展开更多
Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
To investigate the process of information technology (IT) impacts on firm competitiveness, an integrated process model of IT impacts on firm competitiveness is brought forward based on the process-oriented view, the...To investigate the process of information technology (IT) impacts on firm competitiveness, an integrated process model of IT impacts on firm competitiveness is brought forward based on the process-oriented view, the resource-based view and the complementary resource view, which is comprised of an IT conversion process, an information system (IS) adoption process, an IS use process and a competition process. The application capability of IT plays the critical role, which determines the efficiency and effectiveness of the aforementioned four processes. The process model of IT impacts on firm competitiveness can also be used to explain why, under what situations and how IT can generate positive organizational outcomes, as well as theoretical bases for further empirical study.展开更多
Workflow management is an important aspect in CSCW at present. The elementary knowledge of workflow process is introduced, the Petri nets based process modeling methodology and basic definitions are provided, and the ...Workflow management is an important aspect in CSCW at present. The elementary knowledge of workflow process is introduced, the Petri nets based process modeling methodology and basic definitions are provided, and the analysis and verification of structural and behavioral correctness of workflow process are discussed. Finally, the algorithm of verification of process definitions is proposed.展开更多
To achieve an on-demand and dynamic composition model of inter-organizational business processes, a new approach for business process modeling and verification is introduced by using the pi-calculus theory. A new busi...To achieve an on-demand and dynamic composition model of inter-organizational business processes, a new approach for business process modeling and verification is introduced by using the pi-calculus theory. A new business process model which is multi-role, multi-dimensional, integrated and dynamic is proposed relying on inter-organizational collaboration. Compatible with the traditional linear sequence model, the new model is an M x N multi-dimensional mesh, and provides horizontal and vertical formal descriptions for the collaboration business process model. Finally, the pi-calculus theory is utilized to verify the deadlocks, livelocks and synchronization of the example models. The result shows that the proposed approach is efficient and applicable in inter-organizational business process modeling.展开更多
Along with the extensive use of workflow, analysis methods to verify the correctness of the workflow are becoming more and more important. In the paper, we exploit the verification method based on Petri net for workfl...Along with the extensive use of workflow, analysis methods to verify the correctness of the workflow are becoming more and more important. In the paper, we exploit the verification method based on Petri net for workflow process models which deals with the verification of workflow and finds the potential errors in the process design. Additionally, an efficient verification algorithm is given.展开更多
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input ...Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.展开更多
With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning te...With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.展开更多
As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new appro...As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new approach: representing workflow models using π calculus. As a result, the model can characterize the dynamic behaviors of the workflow process in terms of the LTS (Labeled Transition Semantics) semantics of π calculus. The main advantage of the workflow model's formal semantic is that it allows for verification of the model's properties, such as deadlock free and normal termination. Moreover, the equivalence of workflow models can be checked through weak bisimulation theorem in the π calculus, thus facilitating the optimization of business processes.展开更多
A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eig...A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model...In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.展开更多
The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammab...The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.展开更多
The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and qu...The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and quality of the resource estimation. These techniques include: 1) the use of the Multivariate Discovery Process model (MDP) to derive unbiased distribution parameters of reservoir volumetric variables and to reveal correlations among the variables; 2) the use of the Geo-anchored method to estimate simultaneously the number of oil and gas pools in the same play; and 3) the crossvalidation of assessment results from different methods. These techniques are illustrated by using an example of crude oil and natural gas resource assessment of the Sverdrup Basin, Canadian Archipelago. The example shows that when direct volumetric measurements of the untested prospects are not available, the MDP model can help derive unbiased estimates of the distribution parameters by using information from the discovered oil and gas accumulations. It also shows that an estimation of the number of oil and gas accumulations and associated size ranges from a discovery process model can provide an alternative and efficient approach when inadequate geological data hinder the estimation. Cross-examination of assessment results derived using different methods allows one to focus on and analyze the causes for the major differences, thus providing a more reliable assessment outcome.展开更多
Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy effic...Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method.展开更多
The prediction of precipitation depends on accurate modeling of terrestrial transpiration.In recent decades,the trait-based plant hydraulic stress scheme has been developed in land surface models,in order to better pr...The prediction of precipitation depends on accurate modeling of terrestrial transpiration.In recent decades,the trait-based plant hydraulic stress scheme has been developed in land surface models,in order to better predict the hydraulic constraint on terrestrial transpiration.However,the role that each plant functional trait plays in the modeling of transpiration remains unknown.The importance of different plant functional traits for modeled transpiration needs to be addressed.Here,the Morris sensitivity analysis method was implemented in the Common Land Model with the plant hydraulic stress scheme(CoLM-P_(50)HS).Traits related to drought tolerance(P_(50);),stomata,and photosynthesis were screened as the most critical from all 17 plant traits.Among 12 FLUXNET sites,the importance of P_(50);,measured by normalized sensitivity scores,increased towards lower precipitation,whereas the importance of stomatal traits and photosynthetic traits decreased towards drier climate conditions.P_(50);was more important than stomatal traits and photosynthetic traits in arid or semi-arid sites,which implies that hydraulic safety strategies are more crucial than plant growth strategies when plants frequently experience drought.Large variation in drought tolerance traits further proved the coexistence of multiple plant strategies of hydraulic safety.Ignoring the variation in drought tolerance traits may potentially bias the modeling of transpiration.More measurements of drought tolerance traits are therefore necessary to help better represent the diversity of plant hydraulic functions.展开更多
Clinical practice guidelines(CPGs)contain evidence-based and economically reasonable medical treatment processes.Executable medical treatment processes in healthcare information systems can assist the treatment proces...Clinical practice guidelines(CPGs)contain evidence-based and economically reasonable medical treatment processes.Executable medical treatment processes in healthcare information systems can assist the treatment processes.To this end,business process modeling technologies have been exploited to model medical treatment processes.However,medical treatment processes are usually flexible and knowledge-intensive.To reduce the effort in modeling,we summarize several treatment patterns(i.e.,frequent behaviors in medical treatment processes in CPGs),and represent them by three process modeling languages(i.e.,BPMN,DMN,and CMMN).Based on the summarized treatment patterns,we propose a pattern-based integrated framework for modeling medical treatment processes.A modeling platform is implemented to support the use of treatment patterns,by which the feasibility of our approach is validated.An empirical analysis is discussed based on the coverage rates of treatment patterns.Feedback from interviewed physicians in a Chinese hospital shows that executable medical treatment processes of CPGs provide a convenient way to obtain guidance,thus assisting daily work for medical workers.展开更多
Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing con...Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.展开更多
基金support provided by the National Natural Science Foundation of China(22122802,22278044,and 21878028)the Chongqing Science Fund for Distinguished Young Scholars(CSTB2022NSCQ-JQX0021)the Fundamental Research Funds for the Central Universities(2022CDJXY-003).
文摘To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing.
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
基金The National Natural Science Foundation of China(No.70671024).
文摘To investigate the process of information technology (IT) impacts on firm competitiveness, an integrated process model of IT impacts on firm competitiveness is brought forward based on the process-oriented view, the resource-based view and the complementary resource view, which is comprised of an IT conversion process, an information system (IS) adoption process, an IS use process and a competition process. The application capability of IT plays the critical role, which determines the efficiency and effectiveness of the aforementioned four processes. The process model of IT impacts on firm competitiveness can also be used to explain why, under what situations and how IT can generate positive organizational outcomes, as well as theoretical bases for further empirical study.
文摘Workflow management is an important aspect in CSCW at present. The elementary knowledge of workflow process is introduced, the Petri nets based process modeling methodology and basic definitions are provided, and the analysis and verification of structural and behavioral correctness of workflow process are discussed. Finally, the algorithm of verification of process definitions is proposed.
基金The National Natural Science Foundation of China(No60473078)
文摘To achieve an on-demand and dynamic composition model of inter-organizational business processes, a new approach for business process modeling and verification is introduced by using the pi-calculus theory. A new business process model which is multi-role, multi-dimensional, integrated and dynamic is proposed relying on inter-organizational collaboration. Compatible with the traditional linear sequence model, the new model is an M x N multi-dimensional mesh, and provides horizontal and vertical formal descriptions for the collaboration business process model. Finally, the pi-calculus theory is utilized to verify the deadlocks, livelocks and synchronization of the example models. The result shows that the proposed approach is efficient and applicable in inter-organizational business process modeling.
文摘Along with the extensive use of workflow, analysis methods to verify the correctness of the workflow are becoming more and more important. In the paper, we exploit the verification method based on Petri net for workflow process models which deals with the verification of workflow and finds the potential errors in the process design. Additionally, an efficient verification algorithm is given.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金Supported by Beijing Municipal Education Commission (No.xk100100435) and the Key Research Project of Science andTechnology from Sinopec (No.E03007).
文摘Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.
基金supported by the National Natural Science Foundation of China(No.U1960202)。
文摘With the development of automation and informatization in the steelmaking industry,the human brain gradually fails to cope with an increasing amount of data generated during the steelmaking process.Machine learning technology provides a new method other than production experience and metallurgical principles in dealing with large amounts of data.The application of machine learning in the steelmaking process has become a research hotspot in recent years.This paper provides an overview of the applications of machine learning in the steelmaking process modeling involving hot metal pretreatment,primary steelmaking,secondary refining,and some other aspects.The three most frequently used machine learning algorithms in steelmaking process modeling are the artificial neural network,support vector machine,and case-based reasoning,demonstrating proportions of 56%,14%,and 10%,respectively.Collected data in the steelmaking plants are frequently faulty.Thus,data processing,especially data cleaning,is crucially important to the performance of machine learning models.The detection of variable importance can be used to optimize the process parameters and guide production.Machine learning is used in hot metal pretreatment modeling mainly for endpoint S content prediction.The predictions of the endpoints of element compositions and the process parameters are widely investigated in primary steelmaking.Machine learning is used in secondary refining modeling mainly for ladle furnaces,Ruhrstahl–Heraeus,vacuum degassing,argon oxygen decarburization,and vacuum oxygen decarburization processes.Further development of machine learning in the steelmaking process modeling can be realized through additional efforts in the construction of the data platform,the industrial transformation of the research achievements to the practical steelmaking process,and the improvement of the universality of the machine learning models.
文摘As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new approach: representing workflow models using π calculus. As a result, the model can characterize the dynamic behaviors of the workflow process in terms of the LTS (Labeled Transition Semantics) semantics of π calculus. The main advantage of the workflow model's formal semantic is that it allows for verification of the model's properties, such as deadlock free and normal termination. Moreover, the equivalence of workflow models can be checked through weak bisimulation theorem in the π calculus, thus facilitating the optimization of business processes.
基金Financial support from National Nature Science Foundation of China (Grant No. 41572303, 41520104002)Chinese Academy of Sciences “Light of West China” Program and Youth Innovation Promotion Association
文摘A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
基金supported by National Natural Science Foundation of China(No.51306195)Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,CAS(No.CRYO201408)
文摘In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.
基金the financial support from Max Planck Society,Germany,for the Computer-Aided Material and Process Design(CAMPD)project
文摘The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time.
文摘The reservoir volumetric approach represents a widely accepted, but flawed method of petroleum play resource calculation. In this paper, we propose a combination of techniques that can improve the applicability and quality of the resource estimation. These techniques include: 1) the use of the Multivariate Discovery Process model (MDP) to derive unbiased distribution parameters of reservoir volumetric variables and to reveal correlations among the variables; 2) the use of the Geo-anchored method to estimate simultaneously the number of oil and gas pools in the same play; and 3) the crossvalidation of assessment results from different methods. These techniques are illustrated by using an example of crude oil and natural gas resource assessment of the Sverdrup Basin, Canadian Archipelago. The example shows that when direct volumetric measurements of the untested prospects are not available, the MDP model can help derive unbiased estimates of the distribution parameters by using information from the discovered oil and gas accumulations. It also shows that an estimation of the number of oil and gas accumulations and associated size ranges from a discovery process model can provide an alternative and efficient approach when inadequate geological data hinder the estimation. Cross-examination of assessment results derived using different methods allows one to focus on and analyze the causes for the major differences, thus providing a more reliable assessment outcome.
基金Supported by the National Natural Science Foundation of China(21576036,21406026)
文摘Due to the deterioration of serious energy dilemma,energy-conservation and emission–reduction have been the strategic target in the past decades,thus people have identified the vital importance of higher energy efficiency and the influence of lower carbon development.Since work exchange network is a significant part of energy recovery system,its optima design will have dramatically significant effect on energy consumption reduction in chemical process system.With an extension of the developed transshipment model in isothermal process,a novel step-wise methodology for synthesis of direct work exchange network(WEN)in adiabatic process involving heat integration is first proposed in this paper,where a nonlinear programming(NLP)model is formulated by regarding the minimum utility consumption as objective function and optimizing the initial WEN in accordance with the presented matching rules to get the optimized WEN configuration at first.Furthermore,we focus on the work exchange network synthesis with heat integration to attain the minimal total annual cost(TAC)with the introduction of heat-exchange equipment that is achieved by the following strategies in sequence:introducing heat-exchange equipment directly,adjusting the work quantity of the adjacent utility compressors or expanders,and approximating upper/lower pressure limits consequently to obtain considerable cost savings of expanders or compressors and work utility.Finally,a case taken from the literature is studied to illustrate the feasibility and effectiveness of the proposed method.
基金funded by the National Natural Science Foundation of China [grant numbers 42088101,42175158,41575072,41730962,41905075,42075158,and U1811464]the National Key Research and Development Program of China [grant numbers 2017YFA0604300 and 2016YFB0200801]supported by the National Key Scientific and Technological Infrastructure project entitled“Earth System Science Numerical Simulator Facility”(Earth-Lab)。
文摘The prediction of precipitation depends on accurate modeling of terrestrial transpiration.In recent decades,the trait-based plant hydraulic stress scheme has been developed in land surface models,in order to better predict the hydraulic constraint on terrestrial transpiration.However,the role that each plant functional trait plays in the modeling of transpiration remains unknown.The importance of different plant functional traits for modeled transpiration needs to be addressed.Here,the Morris sensitivity analysis method was implemented in the Common Land Model with the plant hydraulic stress scheme(CoLM-P_(50)HS).Traits related to drought tolerance(P_(50);),stomata,and photosynthesis were screened as the most critical from all 17 plant traits.Among 12 FLUXNET sites,the importance of P_(50);,measured by normalized sensitivity scores,increased towards lower precipitation,whereas the importance of stomatal traits and photosynthetic traits decreased towards drier climate conditions.P_(50);was more important than stomatal traits and photosynthetic traits in arid or semi-arid sites,which implies that hydraulic safety strategies are more crucial than plant growth strategies when plants frequently experience drought.Large variation in drought tolerance traits further proved the coexistence of multiple plant strategies of hydraulic safety.Ignoring the variation in drought tolerance traits may potentially bias the modeling of transpiration.More measurements of drought tolerance traits are therefore necessary to help better represent the diversity of plant hydraulic functions.
基金supported by Chinese National Key Research and Development Program(No.2017YFB1400604).
文摘Clinical practice guidelines(CPGs)contain evidence-based and economically reasonable medical treatment processes.Executable medical treatment processes in healthcare information systems can assist the treatment processes.To this end,business process modeling technologies have been exploited to model medical treatment processes.However,medical treatment processes are usually flexible and knowledge-intensive.To reduce the effort in modeling,we summarize several treatment patterns(i.e.,frequent behaviors in medical treatment processes in CPGs),and represent them by three process modeling languages(i.e.,BPMN,DMN,and CMMN).Based on the summarized treatment patterns,we propose a pattern-based integrated framework for modeling medical treatment processes.A modeling platform is implemented to support the use of treatment patterns,by which the feasibility of our approach is validated.An empirical analysis is discussed based on the coverage rates of treatment patterns.Feedback from interviewed physicians in a Chinese hospital shows that executable medical treatment processes of CPGs provide a convenient way to obtain guidance,thus assisting daily work for medical workers.
基金Supported by the National Natural Science Foundation of China (No. 79931000) and The State Major Basic Research Development Program (No. G20000263).
文摘Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.