Integrating wave energy converters(WECs)with offshore platforms offers numerous advantages,such as reducing wave loads,supplying energy to the platform,and cost-sharing in construction.This paper reports an experiment...Integrating wave energy converters(WECs)with offshore platforms offers numerous advantages,such as reducing wave loads,supplying energy to the platform,and cost-sharing in construction.This paper reports an experimental investigation focusing on the hydrodynamic characteristics of a proposed modular floating structure system integrated with WEC-type floating artificial reefs.The proposed system comprises several serially arranged hexagonal floating structures,anchored by tension legs,and integrated with outermost WEC-type floating artificial reefs.A simplified wave energy converter utilizing the relative pitch motion between adjacent modules for energy conversion was constructed in the scale model test.The effects of chain-type modular expansion on the multi-body motion response,mooring tension response,and WEC performance of the system have been thoroughly investigated.The experimental results indicate that increasing the number of hexagonal modules can notably reduce the system’s surge response,particularly under survival sea conditions.The connection of the outermost reef modules slightly increases the tension leg load of the adjacent module,whereas the tension leg load remains relatively consistent across the inner hexagonal modules.Furthermore,through a comparison of the dynamic responses of the hexagonal module connected and unconnected outermost reefs,the good performance in terms of energy conversion and wave attenuation of the WECtype floating artificial reef modules was effectively validated.The main results from this work can provide useful references for engineering applications involving modular floating structures integrated with WECs.展开更多
Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is ...Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is discussed, and its advantages are also emphasized.Furthermore, some specific methods are provided, such as the selection of fixture components, the determination and input of parameters, drawing representative model,and the creation of drawing. Finally an applied example of strcture parametric design is presented.展开更多
In the functional properties of complex networks, modules play a central role. In this paper, we propose a new method to detect and describe the modular structures of weighted networks. In order to test the proposed m...In the functional properties of complex networks, modules play a central role. In this paper, we propose a new method to detect and describe the modular structures of weighted networks. In order to test the proposed method, as an example, we use our method to analyse the structural properties of the Chinese railway network. Here, the stations are regarded as the nodes and the track sections are regarded as the links. Rigorous analysis of the existing data shows that using the proposed algorithm, the nodes of network can be classified naturally. Moreover, there are several core nodes in each module. Remarkably, we introduce the correlation function Grs, and use it to distinguish the different modules in weighted networks.展开更多
The present work reports a Hybrid Modular Floating Structure(HMFS)system with typical malfunction conditions.The effects of both fractured mooring lines and failed connectors on main hydrodynamic responses(mooring lin...The present work reports a Hybrid Modular Floating Structure(HMFS)system with typical malfunction conditions.The effects of both fractured mooring lines and failed connectors on main hydrodynamic responses(mooring line tensions,module motions,connector loads and wave power production)of the HMFS system under typical sea con-ditions are comparatively investigated.The results indicate that the mooring tension distribution,certain module motions(surge,sway and yaw)and connector loads(Mz)are significantly influenced by mooring line fractures.The adjacent mooring line of the fractured line on the upstream side suffers the largest tension among the remaining mooring lines,and the case with two fractured mooring lines in the same group on the upstream side is the most dangerous among all cases of two-line failures in view of mooring line tensions,module motions and connector loads.There-fore,one emergency strategy with appropriate relaxation of a proper mooring line has been proposed and proved effective to reduce the risk of more progressive mooring line fractures.In addition,connector failures substantially affect certain module motions(heave and pitch),certain connector loads(Fz and My)and wave power production.The present work can be helpful and instructive for studies on malfunction conditions of modular floating structure(MFS)systems.展开更多
This paper catalogues the morphology of modular deployable structures of expandable frames developed by the late Felix Escrig at the University of Seville, Spain. The research describes the geometric logic behind thes...This paper catalogues the morphology of modular deployable structures of expandable frames developed by the late Felix Escrig at the University of Seville, Spain. The research describes the geometric logic behind these structures, proposes simplified graphic methods for their design, and outlines their characteristics according to their level of geometric precision, structural stability and deployability. Finally, the paper establishes tools and guidelines for their future development.展开更多
This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber...This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber architecture.The Qing′s grand style timber structure, which is ready for prefabrication and assembly, is extremely hierarchical oriented and significantly standardized. The general procedure in designing a grand style timber structure is to start with the grade that defines the basic module (dou kou); next comes with the number of bracket set (cuan), the number of longitudinal bays and the number of purlins which affect its plan and cross section; thirdly choose a roof type that determines its longitudinal section and the facade as well. A series of formulae are conducted to help depict the layout, cross sectional roof curvature and special longitudinal treatments in 4 sloped and 9 spined roofs respectively.展开更多
We abstract the bus transport networks(BTNs)to two kinds of complex networks with space L and spaceP methods respectively.Using improved community detecting algorithm(PKM agglomerative algorithm),we analyzethe communi...We abstract the bus transport networks(BTNs)to two kinds of complex networks with space L and spaceP methods respectively.Using improved community detecting algorithm(PKM agglomerative algorithm),we analyzethe community property of two kinds of BTNs graphs.The results show that the BTNs graph described with space Lmethod have obvious community property,but the other kind of BTNs graph described with space P method have not.The reason is that the BTNs graph described with space P method have the intense overlapping community propertyand general community division algorithms can not identify this kind of community structure.To overcome this problem,we propose a novel community structure called N-depth community and present a corresponding community detectingalgorithm,which can detect overlapping community.Applying the novel community structure and detecting algorithmto a BTN evolution model described with space P,whose network property agrees well with real BTNs',we get obviouscommunity property.展开更多
The car body steel structure based on stainless steel material has the advantages of high strength, corrosion resistance, no coating, good fire performance, maintenance free, environmental protection and so on. Howeve...The car body steel structure based on stainless steel material has the advantages of high strength, corrosion resistance, no coating, good fire performance, maintenance free, environmental protection and so on. However, the steel structure of rail transit passenger car body generally adopts the overall bearing structure of plate beam combination, and the structural form is relatively complex, which is composed of beam structure and thin plate combination welding. Through the optimization design of the typical structural design of a project of the company, the manufacturing process is further shortened through the optimization and improvement of the structure, which improves the adaptability of components and production equipment, greatly simplifies the demand for roof structure, reduces the welding of most accessories, improves the standardization level of roof structure, and lays the foundation for the realization of modular car body assembly.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mec...To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mechanism. With the proposed self-turning mechanism, the angle adjusting accuracy of the module is increased to 2°, and the relative position adjusting efficiency of the module in the self-assembly process is also improved. The measured maximum moving distance of the proposed module in a gait cycle is 11.0 cm. Aiming at the multiple degree of freedom (MDOF) feature of the proposed module, a motion controller based on the central pattern generator (CPG) is proposed. The control of five joints of the module only requires two CPG oscillators. The CPG-based motion controller has three basic output modes, i. e. the oscillation, the rotation, and the fixed modes. The serpentine and the wheeled movements of the H-shaped robot are simulated, respectively. The results show that the average velocities of the two movements are 15. 2 and 20. 1 m/min, respectively. The proposed CPG-based motion controller is evaluated to be effective.展开更多
Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary jo...Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.展开更多
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a ...GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.展开更多
This work is devoted to the aeronautical application of topology optimization for modular structures with multiple assemblies that consist of repeated standard modules and optional reinforcements.These kinds of struct...This work is devoted to the aeronautical application of topology optimization for modular structures with multiple assemblies that consist of repeated standard modules and optional reinforcements.These kinds of structures are widely used owing to their transportability,reconfigurability,low manufacturing and service costs.In this work,the design of airborne shelves with modular structures characterized by the standard module configuration is formulated for the first time as a topology optimization problem of multiple assemblies and multiple load cases subjected to the volume constraint.It is shown that the weighted compliance design of multiple assemblies is a compromising solution compared to the optimization result of each individual assembly of standard modules.Meanwhile,the performance of optimized airborne shelves with the modular structures can effectively be ameliorated with the help of reinforcements.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52161041)the Natural Science Foundation of Hainan Province(Grant No.520RC552).
文摘Integrating wave energy converters(WECs)with offshore platforms offers numerous advantages,such as reducing wave loads,supplying energy to the platform,and cost-sharing in construction.This paper reports an experimental investigation focusing on the hydrodynamic characteristics of a proposed modular floating structure system integrated with WEC-type floating artificial reefs.The proposed system comprises several serially arranged hexagonal floating structures,anchored by tension legs,and integrated with outermost WEC-type floating artificial reefs.A simplified wave energy converter utilizing the relative pitch motion between adjacent modules for energy conversion was constructed in the scale model test.The effects of chain-type modular expansion on the multi-body motion response,mooring tension response,and WEC performance of the system have been thoroughly investigated.The experimental results indicate that increasing the number of hexagonal modules can notably reduce the system’s surge response,particularly under survival sea conditions.The connection of the outermost reef modules slightly increases the tension leg load of the adjacent module,whereas the tension leg load remains relatively consistent across the inner hexagonal modules.Furthermore,through a comparison of the dynamic responses of the hexagonal module connected and unconnected outermost reefs,the good performance in terms of energy conversion and wave attenuation of the WECtype floating artificial reef modules was effectively validated.The main results from this work can provide useful references for engineering applications involving modular floating structures integrated with WECs.
文摘Based on an example of its typical structure, the concept of modular fixture structure module is presented, and the structure module system of modular fixture is summarized. Then the parametric design of structure is discussed, and its advantages are also emphasized.Furthermore, some specific methods are provided, such as the selection of fixture components, the determination and input of parameters, drawing representative model,and the creation of drawing. Finally an applied example of strcture parametric design is presented.
文摘In the functional properties of complex networks, modules play a central role. In this paper, we propose a new method to detect and describe the modular structures of weighted networks. In order to test the proposed method, as an example, we use our method to analyse the structural properties of the Chinese railway network. Here, the stations are regarded as the nodes and the track sections are regarded as the links. Rigorous analysis of the existing data shows that using the proposed algorithm, the nodes of network can be classified naturally. Moreover, there are several core nodes in each module. Remarkably, we introduce the correlation function Grs, and use it to distinguish the different modules in weighted networks.
基金supported by Shenzhen Science and Technology Program(Grant No.KQTD20210811090112003)the National Natural Science Foundation of China(Grant No.52161041).
文摘The present work reports a Hybrid Modular Floating Structure(HMFS)system with typical malfunction conditions.The effects of both fractured mooring lines and failed connectors on main hydrodynamic responses(mooring line tensions,module motions,connector loads and wave power production)of the HMFS system under typical sea con-ditions are comparatively investigated.The results indicate that the mooring tension distribution,certain module motions(surge,sway and yaw)and connector loads(Mz)are significantly influenced by mooring line fractures.The adjacent mooring line of the fractured line on the upstream side suffers the largest tension among the remaining mooring lines,and the case with two fractured mooring lines in the same group on the upstream side is the most dangerous among all cases of two-line failures in view of mooring line tensions,module motions and connector loads.There-fore,one emergency strategy with appropriate relaxation of a proper mooring line has been proposed and proved effective to reduce the risk of more progressive mooring line fractures.In addition,connector failures substantially affect certain module motions(heave and pitch),certain connector loads(Fz and My)and wave power production.The present work can be helpful and instructive for studies on malfunction conditions of modular floating structure(MFS)systems.
文摘This paper catalogues the morphology of modular deployable structures of expandable frames developed by the late Felix Escrig at the University of Seville, Spain. The research describes the geometric logic behind these structures, proposes simplified graphic methods for their design, and outlines their characteristics according to their level of geometric precision, structural stability and deployability. Finally, the paper establishes tools and guidelines for their future development.
文摘This article, by using mathematical expressions, offers a scientific framework for understanding how the grading system of Qing′s structural carpentry determines the design and construction in the grand style timber architecture.The Qing′s grand style timber structure, which is ready for prefabrication and assembly, is extremely hierarchical oriented and significantly standardized. The general procedure in designing a grand style timber structure is to start with the grade that defines the basic module (dou kou); next comes with the number of bracket set (cuan), the number of longitudinal bays and the number of purlins which affect its plan and cross section; thirdly choose a roof type that determines its longitudinal section and the facade as well. A series of formulae are conducted to help depict the layout, cross sectional roof curvature and special longitudinal treatments in 4 sloped and 9 spined roofs respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60504027 and 60874080the China Postdoctoral Science Foundation Funded Project under Grant No.20060401037
文摘We abstract the bus transport networks(BTNs)to two kinds of complex networks with space L and spaceP methods respectively.Using improved community detecting algorithm(PKM agglomerative algorithm),we analyzethe community property of two kinds of BTNs graphs.The results show that the BTNs graph described with space Lmethod have obvious community property,but the other kind of BTNs graph described with space P method have not.The reason is that the BTNs graph described with space P method have the intense overlapping community propertyand general community division algorithms can not identify this kind of community structure.To overcome this problem,we propose a novel community structure called N-depth community and present a corresponding community detectingalgorithm,which can detect overlapping community.Applying the novel community structure and detecting algorithmto a BTN evolution model described with space P,whose network property agrees well with real BTNs',we get obviouscommunity property.
文摘The car body steel structure based on stainless steel material has the advantages of high strength, corrosion resistance, no coating, good fire performance, maintenance free, environmental protection and so on. However, the steel structure of rail transit passenger car body generally adopts the overall bearing structure of plate beam combination, and the structural form is relatively complex, which is composed of beam structure and thin plate combination welding. Through the optimization design of the typical structural design of a project of the company, the manufacturing process is further shortened through the optimization and improvement of the structure, which improves the adaptability of components and production equipment, greatly simplifies the demand for roof structure, reduces the welding of most accessories, improves the standardization level of roof structure, and lays the foundation for the realization of modular car body assembly.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
基金The National Natural Science Foundation of China(No.61375076)Research&Innovation Program for Graduate Student in Universities of Jiangsu Province(No.CXLX13-085)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1350)
文摘To solve the problem of inaccurate angle adjustment in the self-assembly process, a new homogenous hybrid modular self-reconfigurable robot-Xmobot is designed. Each module has four rotary joints and a self-turning mechanism. With the proposed self-turning mechanism, the angle adjusting accuracy of the module is increased to 2°, and the relative position adjusting efficiency of the module in the self-assembly process is also improved. The measured maximum moving distance of the proposed module in a gait cycle is 11.0 cm. Aiming at the multiple degree of freedom (MDOF) feature of the proposed module, a motion controller based on the central pattern generator (CPG) is proposed. The control of five joints of the module only requires two CPG oscillators. The CPG-based motion controller has three basic output modes, i. e. the oscillation, the rotation, and the fixed modes. The serpentine and the wheeled movements of the H-shaped robot are simulated, respectively. The results show that the average velocities of the two movements are 15. 2 and 20. 1 m/min, respectively. The proposed CPG-based motion controller is evaluated to be effective.
文摘Based on the character of the modular self-reconfigurable (MSR) robot, a novel homogeneous and lattice MSR robot, M-Cubes, was designed. Each module unit of the robot has 12 freedoms and is composed of six rotary joints and one cubic link. An attached/detached mechanism was designed on the rotary joints. A novel space transmitting system was placed on the inner portion of the cubic link. A motor separately transmitted torque to the six joints which were distributed equally on six surfaces of the cubic link. The example of a basic motion for the module was demonstrated. The result shows that the robot is concise and compact in structure, highly efficient in transmission, credible in connecting, and simple in controlling. At the same time, a simulator is developed to graphically design the system configuration, the reconfiguration process and the motion of cluster modules. The character of local action for the cellular automata (CA) is utilized. Each module is simplified as a cell. The transition rules of the CA are developed to combine with the genetic algorithm (GA) and applied to each module to accomplish distributed control. Simulation proves that the method is effective and feasible.
基金partially supported by grants PID2020-115096RB-I00 and PID2023-148273NB-I00 from Ministerio de Ciencia y Universidad (MICIU/AEI)(to EMS)。
文摘GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
基金supported by the National Natural Science Foundation of China (Nos. 12032018 and 12172294)。
文摘This work is devoted to the aeronautical application of topology optimization for modular structures with multiple assemblies that consist of repeated standard modules and optional reinforcements.These kinds of structures are widely used owing to their transportability,reconfigurability,low manufacturing and service costs.In this work,the design of airborne shelves with modular structures characterized by the standard module configuration is formulated for the first time as a topology optimization problem of multiple assemblies and multiple load cases subjected to the volume constraint.It is shown that the weighted compliance design of multiple assemblies is a compromising solution compared to the optimization result of each individual assembly of standard modules.Meanwhile,the performance of optimized airborne shelves with the modular structures can effectively be ameliorated with the help of reinforcements.