A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of ca...A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous, late Paleocene, (early, middle, late) Eocene, middle Miocene, late Pliocene, and Pleistocene. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to test the Co-rich crusts, and a variety of molecular fossils were detected, such as chloroform bituminous "A" , n-alkane, isoprenoid and sterol. Peak carbon and molecular indices (such as C23-/C24+, CPI, Pr/Ph, Pr/nC17, Ph/nCxs and j13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter. Researches on calcareous nannofossils, molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene (P/E) global event is recorded in the cobalt- rich crusts from the northwestern Pacific Ocean. A succession of biomes can be observed near the 85 mm boundary (about 55 Ma), i.e., the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis, and Broisonia parka microbiotas above the P/E boundary, and the bloom of Coccolithus formosus, Discoaster multiradiatus, Discoaster mohleri and Discoaster sp. below the boundary. Typical parameters of molecular fossils, such as saturated hydrocarbon components and carbon-number maxima, Pr/Ph, Pr/C17, Ph/C18, distribution types of sterols, Ts/Tm ratios and bacterial hopane, also exhibit dramatic changes near the P/E boundary. These integrated results illustrate that the biome succession of calcareous nannofossils, relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.展开更多
A series of biomarkers were identified in the aliphafic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四...A series of biomarkers were identified in the aliphafic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四川), South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics indicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr/Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is notable that the topmost end-Permian is characterized by a large perturbauce in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.展开更多
Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a sign...Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a signature assisting our understanding of the causes of the biotic crisis. Aromatic hydrocarbons were fractionated from the total lipid extracts of 37 samples taken from the PermianTriassic boundary (beds 23 to 34) of section B at Meishan (煤山), Zhejiang (浙江) Province in South China. These aromatics were analyzed by using gas chromatography-mass spectrometry (GC-MS). Main compounds identified include naphthalene, phenanthrenes, fluorene, dibenzothiophene, dibenzofuran, fluoranthene, pyrene and some of their methyl homologues. The indices of methyl phenanthrene distribution fraction indicate the comparable maturity (within the oil window, 0.7%-1.0% of the mean vitfinite reflectance) of the organic matter throughout the whole profile analyzed. The ratio of dibenzothiophene to phenanthrene (DBT/PHN) varies generally at a comparable pace with lithology. Significantly, a gradual decrease of this ratio was observed within bed 24 limestone, which is probably due to the variation of sedimentary environment. This change is in line with the drop in the carbon isotope composition of carbonate, the loss of the Changhsingian reef ecosystem, and the decrease of cyanobacteria abundance within the bacteria population. The coincidence of these records suggests a close relation between the biotic crisis and marine environmental conditions, and these records clearly show the onset of the biotic crisis prior to event bed 25.展开更多
Organic matter, associated with ores, host rocks, ore source rocks and present in fluid inclusions in the Qixiashan lead zinc polymetallic deposit hosted in Upper Carboniferous dolomites and limestones in East China,...Organic matter, associated with ores, host rocks, ore source rocks and present in fluid inclusions in the Qixiashan lead zinc polymetallic deposit hosted in Upper Carboniferous dolomites and limestones in East China, was systematically analyzed using Fourier transform infrared spectroscopy, gas chromatography (GC), GC/mass spectrometry and proton induced X ray emission. The biomarker ratios of n C - 21 / n C + 22 alkanes, C 23 tricyclic/C 30 hopane and the tricyclic terpane parameters including C 21 /C 23 , C 19-20 /C 21-29 and C 19-25 /C 26-29 can effectively discriminate ores from host rocks. Extractable organic matter present in fluid inclusions displays similarities to those enclosed in the ore source rocks in the biomarker ratios, suggesting that a proportion of organic matter was introduced into the deposit from the ore source strata. The presence of copper and zinc in stage Ⅱ pyrobitumen indicates that some metals may have been transported by an organic fluid or removed from an aqueous fluid by organic matter.展开更多
Although Pleistocene red paleosols are widely distributed in South China, paleoenviron-mental interpretation has proved difficult because of intense weathering. Here we combine data from molecular fossil and magnetic ...Although Pleistocene red paleosols are widely distributed in South China, paleoenviron-mental interpretation has proved difficult because of intense weathering. Here we combine data from molecular fossil and magnetic properties to reconstruct a record of changes in pedogenic intensity for red paleosols in Southeast China. Depth distribution pattern of magnetic properties indicates that lower (higher) χ but higher (lower) values of HIRM (hard isothermal remanent magnetization) and SIRM (saturation isothermal remanent magnetization)/χ has tight relationship with the intensity of pedogenesis,especially the occurrence of well-developed net-like veins, which is absolutely responsible for the presence of anti-ferromagnetic minerals at the cost of fine-grained SP (superparamagnetic)/SD (single domain) ferrimagnetic minerals. The carbon distribution pattern of n-alkanes, n-alkanols, and n-alkanoic acids reflects the predominant contributions of microorganisms to the organic matter during pedogenesis, which provide direct evidence for strong microbial activities in response to theextremely hot-humid condition while white coarse net-like veins occurrence. Our results demonstrate that the presence of the enhanced East Asia summer monsoon has played a key role in the oxide-dominated weathering regime, and pedogenesis, and microbial activities. Changes in molecular ratios and magnetic properties are used to show that red paleosols have undergone three stages of soil formation in striking response to the evolution of the East Asia summer monsoon: (1) the most effective since the Middle Pleistocene; (2) moderately effective since 270 ka or so; (3) least effective since the last glacial. Our research provides important evidence to understand how red paleosols espond to global change since the Middle Pleistocene.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 41076072 and 40676025)
文摘A biostratigraphic study on calcareous nannofossils from the CM3D06 Co-rich ferromanganese crust from the Magellan seamounts in the northwestern Pacific enabled estimation of depositional age. The bio-imprinting of calcareous nannofossils and other fossil species suggests six age ranges for the nannofossils: late Cretaceous, late Paleocene, (early, middle, late) Eocene, middle Miocene, late Pliocene, and Pleistocene. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to test the Co-rich crusts, and a variety of molecular fossils were detected, such as chloroform bituminous "A" , n-alkane, isoprenoid and sterol. Peak carbon and molecular indices (such as C23-/C24+, CPI, Pr/Ph, Pr/nC17, Ph/nCxs and j13C) indicate that the parent organic matter is dominated by marine phytoplankton and thallogen whereas there is little input of terrestrial organic matter. Researches on calcareous nannofossils, molecular fossils and molecular organic geochemistry data reveal that the Paleocene/Eocene (P/E) global event is recorded in the cobalt- rich crusts from the northwestern Pacific Ocean. A succession of biomes can be observed near the 85 mm boundary (about 55 Ma), i.e., the disappearance of the late Cretaceous Watznaueria barnesae and Zigodicus spiralis, and Broisonia parka microbiotas above the P/E boundary, and the bloom of Coccolithus formosus, Discoaster multiradiatus, Discoaster mohleri and Discoaster sp. below the boundary. Typical parameters of molecular fossils, such as saturated hydrocarbon components and carbon-number maxima, Pr/Ph, Pr/C17, Ph/C18, distribution types of sterols, Ts/Tm ratios and bacterial hopane, also exhibit dramatic changes near the P/E boundary. These integrated results illustrate that the biome succession of calcareous nannofossils, relative content of molecular fossils and molecular indices in the cobalt-rich crusts near the 85 mm boundary faithfully record the P/E global event.
基金supported by the National Natural Science Foundation of China (No. 40730209)the SINOPEC project (G0800-06-ZS-319)
文摘A series of biomarkers were identified in the aliphafic and aromatic fractions of the extracts from Late Permian Dalong (大隆) and Wujiaping (吴家坪) formations in Shangsi (上寺) Section, Northeast Sichuan (四川), South China, on the basis of the analysis of gas chromatography-mass spectrometry (GC-MC). The dominance of lower-molecular-weight n-alkanes throughout the profile suggests the dominant contribution of algae and bacteria to the organics preserved in the marine section. Wujiaping Formation is characterized by the elevated contribution from algae as well as other photoautotrophs such as photosynthetic bacteria as shown by the molecular ratios of hopanes to steranes or tricyclic terpanes as well as the ratio of pristane (Pr) and phytane (Ph) to C17 and C18 n-alkanes. This is in accord with the data from the microscopic measurement on the calcareous algae. In contrast, Dalong Formation is featured by enhanced contribution from bacteria and probably terrestrial organics indicated by the enhanced C24 tetracyclic terpanes relative to tricyclic terpanes. The two formations also show a distinct discrimination in sedimentary environmental conditions including redox condition and salinity. The anoxic condition was only found in the middle of the Dalong Formation as shown by the ratios of Pr/Ph and dibenzothiophene to phenanthrene, consistent with the reported data of Mo and U. An enhanced salinity indicated by the homohopane index is observed at the shallow Wujiaping Formation. On the basis of the composition of primary productivity and the redox condition, Dalong Formation is proposed, herein, to be potential hydrocarbon source rocks in the study site. It is notable that the topmost end-Permian is characterized by a large perturbauce in both the redox condition and salinity, with oxic conditions being frequently interrupted by short-term anoxia, likely showing a causal relationship with the episodic biotic crisis across the Permian-Triassic boundary.
基金This paper is supported by the National Natural Science Foundation ofChina (No.40232025) the Programfor New Century Excellent Talentin University of the Ministry of Education of China (NCET-04-0729) .
文摘Aromatic compounds extracted from sedimentary rocks can reflect environmental conditions, organic sources and maturity. The aromatics, identified in association with mass extinction in particular, would provide a signature assisting our understanding of the causes of the biotic crisis. Aromatic hydrocarbons were fractionated from the total lipid extracts of 37 samples taken from the PermianTriassic boundary (beds 23 to 34) of section B at Meishan (煤山), Zhejiang (浙江) Province in South China. These aromatics were analyzed by using gas chromatography-mass spectrometry (GC-MS). Main compounds identified include naphthalene, phenanthrenes, fluorene, dibenzothiophene, dibenzofuran, fluoranthene, pyrene and some of their methyl homologues. The indices of methyl phenanthrene distribution fraction indicate the comparable maturity (within the oil window, 0.7%-1.0% of the mean vitfinite reflectance) of the organic matter throughout the whole profile analyzed. The ratio of dibenzothiophene to phenanthrene (DBT/PHN) varies generally at a comparable pace with lithology. Significantly, a gradual decrease of this ratio was observed within bed 24 limestone, which is probably due to the variation of sedimentary environment. This change is in line with the drop in the carbon isotope composition of carbonate, the loss of the Changhsingian reef ecosystem, and the decrease of cyanobacteria abundance within the bacteria population. The coincidence of these records suggests a close relation between the biotic crisis and marine environmental conditions, and these records clearly show the onset of the biotic crisis prior to event bed 25.
文摘Organic matter, associated with ores, host rocks, ore source rocks and present in fluid inclusions in the Qixiashan lead zinc polymetallic deposit hosted in Upper Carboniferous dolomites and limestones in East China, was systematically analyzed using Fourier transform infrared spectroscopy, gas chromatography (GC), GC/mass spectrometry and proton induced X ray emission. The biomarker ratios of n C - 21 / n C + 22 alkanes, C 23 tricyclic/C 30 hopane and the tricyclic terpane parameters including C 21 /C 23 , C 19-20 /C 21-29 and C 19-25 /C 26-29 can effectively discriminate ores from host rocks. Extractable organic matter present in fluid inclusions displays similarities to those enclosed in the ore source rocks in the biomarker ratios, suggesting that a proportion of organic matter was introduced into the deposit from the ore source strata. The presence of copper and zinc in stage Ⅱ pyrobitumen indicates that some metals may have been transported by an organic fluid or removed from an aqueous fluid by organic matter.
基金supported by the National Natural Science Foundation of China(Nos.40502015,40872202,and40930210)the 111 Project of China(No.B08030)
文摘Although Pleistocene red paleosols are widely distributed in South China, paleoenviron-mental interpretation has proved difficult because of intense weathering. Here we combine data from molecular fossil and magnetic properties to reconstruct a record of changes in pedogenic intensity for red paleosols in Southeast China. Depth distribution pattern of magnetic properties indicates that lower (higher) χ but higher (lower) values of HIRM (hard isothermal remanent magnetization) and SIRM (saturation isothermal remanent magnetization)/χ has tight relationship with the intensity of pedogenesis,especially the occurrence of well-developed net-like veins, which is absolutely responsible for the presence of anti-ferromagnetic minerals at the cost of fine-grained SP (superparamagnetic)/SD (single domain) ferrimagnetic minerals. The carbon distribution pattern of n-alkanes, n-alkanols, and n-alkanoic acids reflects the predominant contributions of microorganisms to the organic matter during pedogenesis, which provide direct evidence for strong microbial activities in response to theextremely hot-humid condition while white coarse net-like veins occurrence. Our results demonstrate that the presence of the enhanced East Asia summer monsoon has played a key role in the oxide-dominated weathering regime, and pedogenesis, and microbial activities. Changes in molecular ratios and magnetic properties are used to show that red paleosols have undergone three stages of soil formation in striking response to the evolution of the East Asia summer monsoon: (1) the most effective since the Middle Pleistocene; (2) moderately effective since 270 ka or so; (3) least effective since the last glacial. Our research provides important evidence to understand how red paleosols espond to global change since the Middle Pleistocene.