Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio...Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.展开更多
Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR imag...Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR images often suffer from the low intensity contrast around the boundary of ROIs,large inter-subject variance and large inner-subject variance.To address these issues,many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade.In this paper,multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods,conventional methods for label fusion,datasets that have been used for evaluating the multiatlas methods,as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.展开更多
Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noti...Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.展开更多
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ...To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations.展开更多
In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different ...In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested.展开更多
The segmentation of individual words into characters is a vital process in handwritten character recognition systems. In this paper, a novel approach is proposed to segment handwritten Arabic text (words). We consider...The segmentation of individual words into characters is a vital process in handwritten character recognition systems. In this paper, a novel approach is proposed to segment handwritten Arabic text (words). We consider the “Naskh” font style. The segmentation algorithm employs seven agents in order to detect regions where segmentation is illegal. Feature points (end points) are extracted from the remaining regions of the word-image. Initially, the middle of every two successive end points is considered as a candidate segmentation point based on a set of rules. The experimental results are very promising as we achieved a success rate of 86%.展开更多
Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting...Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme,MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region.Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.展开更多
Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the addi...Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the V1E degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.展开更多
Based on the vector diffraction theory, the effect of complex phase filters on intensity distribution of a radially polarized multi Gaussian beam in the focal region of high NA lens is theoretically investigated. It i...Based on the vector diffraction theory, the effect of complex phase filters on intensity distribution of a radially polarized multi Gaussian beam in the focal region of high NA lens is theoretically investigated. It is observed that a properly designed multi belt complex phase filter can generate subwavelength novel focal patterns including splitting of focal spots and generation of multiple focal spot segments such as eight, six and four focal spots along the optical axis are obtained. We expect that such an investigation is useful for optical manipulation and material processing, multiple high refractive index particle trapping technologies.展开更多
Through the analysis to the DDoS(distributed denial of service) attack, it will conclude that at different time segments, the arrive rate of normal SYN (Synchronization) package are similar, while the abnormal pac...Through the analysis to the DDoS(distributed denial of service) attack, it will conclude that at different time segments, the arrive rate of normal SYN (Synchronization) package are similar, while the abnormal packages are different with the normal ones. Toward this situation a DDoS defense algorithm based on multi-segment timeout technology is presented, more than one timeout segment are set to control the net flow. Experiment results show that in the case of little flow, multi-segment timeout has the ability dynamic defense, so the system performance is improved and the system has high response rate.展开更多
Knowledge-based multi-feaure-fusion and multi-resolution analysis is for adapive image segment -ation and experimental results show it can be used to extraot targets from complicated backgcround with the help of Prior...Knowledge-based multi-feaure-fusion and multi-resolution analysis is for adapive image segment -ation and experimental results show it can be used to extraot targets from complicated backgcround with the help of Priorknowledge and artificial intelligence.展开更多
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-seg...A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.展开更多
Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector fl...Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.展开更多
The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is th...The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is the c-means method. The proposed method is introduced in order to perform a cognitive program which is assigned to be implemented on a parallel and distributed machine based on mobile agents. The main idea of the proposed algorithm is to execute the c-means classification procedure by the Mobile Classification Agents (Team Workers) on different nodes on their data at the same time and provide the results to their Mobile Host Agent (Team Leader) which computes the global results and orchestrates the classification until the convergence condition is achieved and the output segmented images will be provided from the Mobile Classification Agents. The data in our case are the big data MRI image of size (m × n) which is splitted into (m × n) elementary images one per mobile classification agent to perform the classification procedure. The experimental results show that the use of the distributed architecture improves significantly the big data segmentation efficiency.展开更多
基金This project was supported by the National Natural Foundation of China (60404022) and the Foundation of Department ofEducation of Hebei Province (2002209).
文摘Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness.
基金Supported by the National Natural Science Foundation of China(Nos.61876082,61861130366,61703301)the Jiangsu Provincial 333 High-level Talent Cultivation Projects~~
文摘Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR images often suffer from the low intensity contrast around the boundary of ROIs,large inter-subject variance and large inner-subject variance.To address these issues,many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade.In this paper,multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods,conventional methods for label fusion,datasets that have been used for evaluating the multiatlas methods,as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.
基金The paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan) ( No .CUGQNL0616) Research Foundationfor State Key Laboratory of Geo-logical Processes and Mineral Resources ( No . MGMR2002-02)Hubei Provincial Depart ment of Education (B) .
文摘Urban land provides a suitable location for various economic activities which affect the development of surrounding areas. With rapid industrialization and urbanization, the contradictions in land-use become more noticeable. Urban administrators and decision-makers seek modern methods and technology to provide information support for urban growth. Recently, with the fast development of high-resolution sensor technology, more relevant data can be obtained, which is an advantage in studying the sustainable development of urban land-use. However, these data are only information sources and are a mixture of "information" and "noise". Processing, analysis and information extraction from remote sensing data is necessary to provide useful information. This paper extracts urban land-use information from a high-resolution image by using the multi-feature information of the image objects, and adopts an object-oriented image analysis approach and multi-scale image segmentation technology. A classification and extraction model is set up based on the multi-features of the image objects, in order to contribute to information for reasonable planning and effective management. This new image analysis approach offers a satisfactory solution for extracting information quickly and efficiently.
文摘To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations.
文摘In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested.
基金Acknowledgement: The work was supported by the National Natural Science Foundation of China (No. 60702056, No. 60841003) the Young Researcher Programmed Foundation for Humanities and Social Science from Minister of Education, China (No. 06JC630007)+1 种基金 the University Natural Science Guidance Planning of Jiangsu Province (No. 08KJD580005) the Automobile Engineering Key Laboratory Open Fund of Jiangsu Province (No. QC200705).
文摘The segmentation of individual words into characters is a vital process in handwritten character recognition systems. In this paper, a novel approach is proposed to segment handwritten Arabic text (words). We consider the “Naskh” font style. The segmentation algorithm employs seven agents in order to detect regions where segmentation is illegal. Feature points (end points) are extracted from the remaining regions of the word-image. Initially, the middle of every two successive end points is considered as a candidate segmentation point based on a set of rules. The experimental results are very promising as we achieved a success rate of 86%.
文摘Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme,MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region.Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.
基金sponsored by Jiangsu Provincial Colleges and Universities Natural Science Foundation of China (Grant No.08KJD410001)Humanities and Social Sciences Planning Fund of Ministry of Education of China (Grant No. 12YJAZH151)Humanities and Social Sciences Youth Fund of Ministry of Education of China (Grant No. 12YJCZH209)
文摘Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process' overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the V1E degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.
文摘Based on the vector diffraction theory, the effect of complex phase filters on intensity distribution of a radially polarized multi Gaussian beam in the focal region of high NA lens is theoretically investigated. It is observed that a properly designed multi belt complex phase filter can generate subwavelength novel focal patterns including splitting of focal spots and generation of multiple focal spot segments such as eight, six and four focal spots along the optical axis are obtained. We expect that such an investigation is useful for optical manipulation and material processing, multiple high refractive index particle trapping technologies.
基金Supported by the Natural Science Foundation ofHebei Province (F2004000133)
文摘Through the analysis to the DDoS(distributed denial of service) attack, it will conclude that at different time segments, the arrive rate of normal SYN (Synchronization) package are similar, while the abnormal packages are different with the normal ones. Toward this situation a DDoS defense algorithm based on multi-segment timeout technology is presented, more than one timeout segment are set to control the net flow. Experiment results show that in the case of little flow, multi-segment timeout has the ability dynamic defense, so the system performance is improved and the system has high response rate.
文摘Knowledge-based multi-feaure-fusion and multi-resolution analysis is for adapive image segment -ation and experimental results show it can be used to extraot targets from complicated backgcround with the help of Priorknowledge and artificial intelligence.
基金Project supported by the National Defense Pre-Research Foundation of China(Grant No.9140A020105)
文摘A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.
文摘Medical image segmentation is one of the key technologies in computer aided diagnosis. Due to the complexity and diversity of medical images, the wavelet multi-scale analysis is introduced into GVF (gradient vector flow) snake model. The modulus values of each scale and phase angle values are calculated using wavelet transform, and the local maximum points of modulus values, which are the contours of the object edges, are obtained along phase angle direction at each scale. Then, location of the edges of the object and segmentation is implemented by GVF snake model. The experiments on some medical images show that the improved algorithm has small amount of computation, fast convergence and good robustness to noise.
文摘The aim of this paper is to present a distributed algorithm for big data classification, and its application for Magnetic Resonance Images (MRI) segmentation. We choose the well-known classification method which is the c-means method. The proposed method is introduced in order to perform a cognitive program which is assigned to be implemented on a parallel and distributed machine based on mobile agents. The main idea of the proposed algorithm is to execute the c-means classification procedure by the Mobile Classification Agents (Team Workers) on different nodes on their data at the same time and provide the results to their Mobile Host Agent (Team Leader) which computes the global results and orchestrates the classification until the convergence condition is achieved and the output segmented images will be provided from the Mobile Classification Agents. The data in our case are the big data MRI image of size (m × n) which is splitted into (m × n) elementary images one per mobile classification agent to perform the classification procedure. The experimental results show that the use of the distributed architecture improves significantly the big data segmentation efficiency.