在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YO...在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YOLOv4的路径聚合网络中增加一个新的特征层进行多尺度特征融合,提升模型对底层纹理特征的提取能力。在YOLO Head检测头前嵌入ECA(Efficient Channel Attention)通道注意力模块,对聚合后的特征进行合理的抑制和增强,将CIoU(Complete Intersection over Union)损失函数替换为Soft-CIoU损失函数,提高小目标车辆对损失函数的贡献度。在公开车辆数据集UA-DETRAC与KITTI中的实验结果表明,相较于原YOLOv4算法,所提算法的平均精度分别提升了2.45百分点和1.14百分点,检测速度达到41.67 frame·s^(-1)。相较于其他先进算法,所提算法在检测精度上表现良好。展开更多
针对在复杂背景下输电线路多尺度缺陷目标检测精度较低的问题,文中提出一种基于改进YOLOv7(You Only Look Once version 7)的输电线路多类缺陷目标检测模型。对于复杂背景造成缺陷目标较低的问题,在Backbone部分引入改进的Swin Transfor...针对在复杂背景下输电线路多尺度缺陷目标检测精度较低的问题,文中提出一种基于改进YOLOv7(You Only Look Once version 7)的输电线路多类缺陷目标检测模型。对于复杂背景造成缺陷目标较低的问题,在Backbone部分引入改进的Swin Transformer模块,通过使用多头注意力机制提升对全局特征的提取效果来提高模型的检测精度。对于待检测目标的多尺度特性,在特征金字塔基础上引入自适应特征融合模块,提升了Neck部分特征融合网络对多类不同尺度缺陷目标的检测能力。使用SIoU(Structured Intersection over Union)损失函数在提高预测框回归精度的同时加快了模型的收敛。实验结果表明,相较于YOLOv5、YOLOv7和Faster R-CNN(Faster Region with Convolutional Neural Network)模型,改进YOLOv7模型具有较高的检测精度,其平均检测精度可达96.4%,检测速度为29.6 frame·s^(-1),能够为输电线路多类缺陷目标检测提供参考。展开更多
针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失...针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失、提高小目标检测能力;提出多信息流融合注意力机制——Spatial and Channel Attention Mechanism(SCA),动态调整注意力对空间信息流和语义信息流的关注,获得更丰富的特征信息以提高捕获目标的能力;更换损失函数为SIoU,加快模型收敛速度。在公开数据集VisDrone2019上进行对比实验,改进后算法的mAP50值相比YOLOv7提高了4%,达到了52.4%,FPS为37,消融实验验证了每个模块均提升了检测精度。实验表明,改进后的算法能较好地检测无人机图像中的目标。展开更多
文摘在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YOLOv4的路径聚合网络中增加一个新的特征层进行多尺度特征融合,提升模型对底层纹理特征的提取能力。在YOLO Head检测头前嵌入ECA(Efficient Channel Attention)通道注意力模块,对聚合后的特征进行合理的抑制和增强,将CIoU(Complete Intersection over Union)损失函数替换为Soft-CIoU损失函数,提高小目标车辆对损失函数的贡献度。在公开车辆数据集UA-DETRAC与KITTI中的实验结果表明,相较于原YOLOv4算法,所提算法的平均精度分别提升了2.45百分点和1.14百分点,检测速度达到41.67 frame·s^(-1)。相较于其他先进算法,所提算法在检测精度上表现良好。
文摘针对在复杂背景下输电线路多尺度缺陷目标检测精度较低的问题,文中提出一种基于改进YOLOv7(You Only Look Once version 7)的输电线路多类缺陷目标检测模型。对于复杂背景造成缺陷目标较低的问题,在Backbone部分引入改进的Swin Transformer模块,通过使用多头注意力机制提升对全局特征的提取效果来提高模型的检测精度。对于待检测目标的多尺度特性,在特征金字塔基础上引入自适应特征融合模块,提升了Neck部分特征融合网络对多类不同尺度缺陷目标的检测能力。使用SIoU(Structured Intersection over Union)损失函数在提高预测框回归精度的同时加快了模型的收敛。实验结果表明,相较于YOLOv5、YOLOv7和Faster R-CNN(Faster Region with Convolutional Neural Network)模型,改进YOLOv7模型具有较高的检测精度,其平均检测精度可达96.4%,检测速度为29.6 frame·s^(-1),能够为输电线路多类缺陷目标检测提供参考。
文摘针对无人机图像中由于目标微小且相互遮挡、特征信息少导致检测精度低的问题,提出一种基于改进YOLOv7的无人机图像目标检测算法。在颈部和检测头中加入了坐标卷积,能更好地感受特征图中目标的位置信息;增加P2检测层,减少小目标特征丢失、提高小目标检测能力;提出多信息流融合注意力机制——Spatial and Channel Attention Mechanism(SCA),动态调整注意力对空间信息流和语义信息流的关注,获得更丰富的特征信息以提高捕获目标的能力;更换损失函数为SIoU,加快模型收敛速度。在公开数据集VisDrone2019上进行对比实验,改进后算法的mAP50值相比YOLOv7提高了4%,达到了52.4%,FPS为37,消融实验验证了每个模块均提升了检测精度。实验表明,改进后的算法能较好地检测无人机图像中的目标。