The multi-energy complementary distributed energy system (MCDES) covers a variety of energy forms, involves complex operation modes, and contains a wealth of control equipment and coupling links. It can realize the co...The multi-energy complementary distributed energy system (MCDES) covers a variety of energy forms, involves complex operation modes, and contains a wealth of control equipment and coupling links. It can realize the complementary and efficient use of different types of energy, which is the basic component of the physical layer of the Energy Internet. In this paper, aiming at the demand of the energy application for towns, a distributed energy system based on multi-energy complementary is constructed. Firstly, the supply condition of the distributed energy for the demonstration project is analyzed, and the architecture of the multi-energy complementary distributed energy system is established. Then the regulation strategy of the multi-energy complementary distributed energy system is proposed. Finally, an overall system scheme for the multi-energy complementary distributed energy system suitable for towns is developed, which provides a solid foundation for the development and promotion of the multi-energy complementary distributed energy system.展开更多
As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy o...As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.展开更多
With the rapid growth of photovoltaic integration,the volatility and uncertainty of intermittent photovoltaic injection will dramatically reduce system operation reliability from the generation side.The system operato...With the rapid growth of photovoltaic integration,the volatility and uncertainty of intermittent photovoltaic injection will dramatically reduce system operation reliability from the generation side.The system operator may face certain financial risks brought by unexpected power failure under low operation reliability.Therefore,maintaining sufficient power reserve to meet system operation reliability and reduce risk,especially in an isolated system,is essential.However,the traditional reserve preparation strategy fails to consider the uncertainties of the power generation under the high penetration levels of emerging renewable energy resources.A novel reserve preparation strategy for an isolated system is developed in this paper using a twostage model.In the first stage,the optimal hourly scheduling of an isolated system is determined.In the second stage,a minute level conditional value-at-risk(CVaR)based model is established where the uncertainty of the reserve requirement is introduced with the chance constraint.The proposed discretized step transformation(DST)and subtraction type convolution(STC)methods are utilized to convert the model into mixedinteger linear programming,and finally solved by applying the CPLEX solver.The IEEE 39-bus system is used as the test case to validate the feasibility and effectiveness of the proposed two-stage model.展开更多
The multi-energy complementary ecosystem is an important form of the modern energy system.However,standardized evaluation criteria and the corresponding method framework have not yet been formed,resulting in unclear s...The multi-energy complementary ecosystem is an important form of the modern energy system.However,standardized evaluation criteria and the corresponding method framework have not yet been formed,resulting in unclear standards and irregular processes of its construction.To cope with this issue,a novel comprehensive evaluation framework for multi-energy complementary ecosystems is proposed in this study.First,a 5D comprehensive evaluation criteria system,including environment,economy,technology,safety and systematicness,is constructed.Then,a novel multicriteria decision-making model integrating an analytic network process,entropy and preference-ranking organization method for enrichment evaluation under an intuitional fuzzy environment is proposed.Finally,four practical cases are used for model testing and empirical analysis.The results of the research show that the unit cost of the energy supply and the internal rate of return indexes have the highest weights of 0.142 and 0.010,respectively.It means that they are the focus in the construction of a multi-energy complementary ecosystem.The net flows of four cases are 0.015,0.123,-0.132 and-0.005,indicating that cases with a variety of energy supply forms and using intelligent management and control platforms to achieve cold,heat and electrical coupling have more advantages.展开更多
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ...Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.展开更多
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery...Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.展开更多
The complement system is crucial for maintaining immunological homeostasis in the liver,playing a significant role in both innate and adaptive immune responses.Dysregulation of this system is closely linked to the pat...The complement system is crucial for maintaining immunological homeostasis in the liver,playing a significant role in both innate and adaptive immune responses.Dysregulation of this system is closely linked to the pathogenesis of various liver diseases.Modulating the complement system can affect the progression of these conditions.To provide insights into treating liver injury by targeting the regu-lation of the complement system,we conducted a comprehensive search of major biomedical databases,including MEDLINE,PubMed,EMBASE,and Web of Science,to identify articles on complement and liver injury and reviewed the functions and mechanisms of the complement system in liver injury.展开更多
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
In the background of the large-scale development and utilization of renewable energy,the joint operation of a variety of heterogeneous energy sources has become an inevitable development trend.However,the physical cha...In the background of the large-scale development and utilization of renewable energy,the joint operation of a variety of heterogeneous energy sources has become an inevitable development trend.However,the physical characteristics of different power sources and the inherent uncertainties of renewable energy power generation have brought difficulties to the planning,operation and control of power systems.For now,the utilization of multi-energy complementarity to promote energy transformation and improve the consumption of renewable energy has become a common understanding among researchers and the engineering community.This paper makes a review of the research on complementarity of new energy high proportion multi-energy systems from uncertainty modeling,complementary characteristics,planning and operation.We summarize the characteristics of the existing research and provide a reference for the further work.展开更多
BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury re...BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.展开更多
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the rela...BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-...BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.展开更多
In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisi...In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.展开更多
Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in th...Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.展开更多
文摘The multi-energy complementary distributed energy system (MCDES) covers a variety of energy forms, involves complex operation modes, and contains a wealth of control equipment and coupling links. It can realize the complementary and efficient use of different types of energy, which is the basic component of the physical layer of the Energy Internet. In this paper, aiming at the demand of the energy application for towns, a distributed energy system based on multi-energy complementary is constructed. Firstly, the supply condition of the distributed energy for the demonstration project is analyzed, and the architecture of the multi-energy complementary distributed energy system is established. Then the regulation strategy of the multi-energy complementary distributed energy system is proposed. Finally, an overall system scheme for the multi-energy complementary distributed energy system suitable for towns is developed, which provides a solid foundation for the development and promotion of the multi-energy complementary distributed energy system.
基金funded by the National Key R&D Program of China,grant number 2019YFB1505400.
文摘As the power system transitions to a new green and low-carbon paradigm,the penetration of renewable energy in China’s power system is gradually increasing.However,the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration.This paper first constructs a wind-solar-thermalmulti-energy complementary system,analyzes its external game relationships,and develops a bi-level market optimization model.Then,it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system.Finally,simulation studies using the IEEE 30-bus system demonstrate that the multi-energy complementary system stabilizes nodal outputs,enhances the profitability of market participants,and promotes the market-based integration of renewable energy.
文摘With the rapid growth of photovoltaic integration,the volatility and uncertainty of intermittent photovoltaic injection will dramatically reduce system operation reliability from the generation side.The system operator may face certain financial risks brought by unexpected power failure under low operation reliability.Therefore,maintaining sufficient power reserve to meet system operation reliability and reduce risk,especially in an isolated system,is essential.However,the traditional reserve preparation strategy fails to consider the uncertainties of the power generation under the high penetration levels of emerging renewable energy resources.A novel reserve preparation strategy for an isolated system is developed in this paper using a twostage model.In the first stage,the optimal hourly scheduling of an isolated system is determined.In the second stage,a minute level conditional value-at-risk(CVaR)based model is established where the uncertainty of the reserve requirement is introduced with the chance constraint.The proposed discretized step transformation(DST)and subtraction type convolution(STC)methods are utilized to convert the model into mixedinteger linear programming,and finally solved by applying the CPLEX solver.The IEEE 39-bus system is used as the test case to validate the feasibility and effectiveness of the proposed two-stage model.
基金supported by the second batch of the soft subject research project of China Southern Power Grid Corporation in 2022,‘Exploring the construction path of multi energy complementary ecosystem of industrial parks in Qianhai’(XNXM_20221209003).
文摘The multi-energy complementary ecosystem is an important form of the modern energy system.However,standardized evaluation criteria and the corresponding method framework have not yet been formed,resulting in unclear standards and irregular processes of its construction.To cope with this issue,a novel comprehensive evaluation framework for multi-energy complementary ecosystems is proposed in this study.First,a 5D comprehensive evaluation criteria system,including environment,economy,technology,safety and systematicness,is constructed.Then,a novel multicriteria decision-making model integrating an analytic network process,entropy and preference-ranking organization method for enrichment evaluation under an intuitional fuzzy environment is proposed.Finally,four practical cases are used for model testing and empirical analysis.The results of the research show that the unit cost of the energy supply and the internal rate of return indexes have the highest weights of 0.142 and 0.010,respectively.It means that they are the focus in the construction of a multi-energy complementary ecosystem.The net flows of four cases are 0.015,0.123,-0.132 and-0.005,indicating that cases with a variety of energy supply forms and using intelligent management and control platforms to achieve cold,heat and electrical coupling have more advantages.
基金supported by the Fundamental Research Program of Shanxi Province of China,No.20210302124277the Science Foundation of Shanxi Bethune Hospital,No.2021YJ13(both to JW)。
文摘Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.
基金supported by the Department of Veterans Affairs(VA Merit Award BX004256)(to AMA)Emory Department of Neurosurgery Catalyst GrantEmory Medical Care Foundation Grant(to AMA and JG)。
文摘Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models.
基金Supported by the Science and Technology Planning Projects of Guizhou Province,No.QKHJC-ZK[2022]YB642the Science and Technology Planning Projects of Zunyi City,No.ZSKHHZ(2022)344+4 种基金the WBE Liver Fibrosis Foundation,No.CFHPC2025028the Chinese Foundation for Hepatitis Prevention and Control Muxin Research Fund of CHB,No.MX202404Beijing Liver and Gallbladder Mutual Aid Public Welfare Foundation Artificial Liver Special Fund,No.iGandanF-1082024-Rgg018the Graduate Research Fund Project of Zunyi Medical University,No.ZYK246the Student Innovation and Entrepreneurship Training Program of Zunyi Medical University,No.2024106610923 and No.S202310661028.
文摘The complement system is crucial for maintaining immunological homeostasis in the liver,playing a significant role in both innate and adaptive immune responses.Dysregulation of this system is closely linked to the pathogenesis of various liver diseases.Modulating the complement system can affect the progression of these conditions.To provide insights into treating liver injury by targeting the regu-lation of the complement system,we conducted a comprehensive search of major biomedical databases,including MEDLINE,PubMed,EMBASE,and Web of Science,to identify articles on complement and liver injury and reviewed the functions and mechanisms of the complement system in liver injury.
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
基金supported by the Science and Technology Project of State Grid Corporation of China.
文摘In the background of the large-scale development and utilization of renewable energy,the joint operation of a variety of heterogeneous energy sources has become an inevitable development trend.However,the physical characteristics of different power sources and the inherent uncertainties of renewable energy power generation have brought difficulties to the planning,operation and control of power systems.For now,the utilization of multi-energy complementarity to promote energy transformation and improve the consumption of renewable energy has become a common understanding among researchers and the engineering community.This paper makes a review of the research on complementarity of new energy high proportion multi-energy systems from uncertainty modeling,complementary characteristics,planning and operation.We summarize the characteristics of the existing research and provide a reference for the further work.
基金Supported by Natural Science Foundation of Guangxi,No.2020GXNSFDA238006Special Fund of the Central Government Guiding Local Scientific and Technological Development by Guangxi Science and Technology Department,No.GuikeZY21195024Research Enhancement Project for Junior Faculty in Higher Education Institutes of Guangxi,No.2018KY0419.
文摘BACKGROUND Complement activation is recognized as an important factor in the progression of liver damage caused by acetaminophen(APAP).However,the role of the complement inhibitor C2-FH in APAP-induced liver injury remains unclear.AIM To explore C2-FH in protecting against APAP-induced liver injury by inhibiting complement activation.METHODS A model of APAP-induced liver injury was used to study the protective effect of C2-FH on liver injury.C2-FH was administered through intraperitoneal injection 30 minutes after APAP treatment.We detected the effects of C2-FH on liver function,inflammatory response and complement activation.Additionally,RNA-sequencing(RNA-Seq)analysis was conducted to understand the mechanism through which C2-FH provides protection against APAP-induced liver injury.RESULTS C2-FH inhibited the increase in serum alanine aminotransferase activity,aspartate aminotransferase activity and lactate dehydrogenase,and reduced liver tissue necrosis caused by APAP.Moreover,it attenuated the inflammatory response and inhibited complement activation in APAP-induced liver injury.RNA-Seq analysis provided additional explanations for the protective role of C2-FH against APAP-induced liver injury.CONCLUSION C2-FH attenuates APAP-induced liver injury by inhibiting complement activation.
文摘BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response.Nevertheless,their role in colorectal cancer(CRC)remains a contentious subject.AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics.METHODS Searches were conducted in PubMed,the Cochrane Library,and the China National Knowledge Infrastructure database until June 1,2023.We included cohort studies encompassing participants aged≥18 years,investigating the association between complement components and CRC.The studies were of moderate quality or above,as determined by the Agency for Healthcare Research and Quality.The meta-analysis employed fixed-effects or random-effects models based on the I^(2)test,utilizing risk ratio(RR)and their corresponding 95%confidence interval(CI)for outcomes.Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity.RESULTS Data from 15 studies,comprising 1631 participants that met the inclusion criteria,were included in the meta-analysis.Our findings indicated that protein levels of cluster of differentiation 46(CD46)(RR=3.66,95%CI:1.75-7.64,P<0.001),CD59(RR=2.86,95%CI:1.36-6.01,P=0.005),and component 1(C1)(RR=5.88,95%CI:1.75-19.73,P=0.004)and serum levels of C3(standardized mean difference=1.82,95%CI:0.06-3.58,P=0.040)were significantly elevated in patients with CRC compared to healthy controls.Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis,whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression(P<0.05 for all).Although specific pooled results demonstrated notable heterogeneity,subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies.CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC,emphasizing the potential significance of monitoring elevated complement component levels.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘BACKGROUND Colon cancer(CC)occurrence and progression are considerably influenced by the tumor microenvironment.However,the exact underlying regulatory mechanisms remain unclear.AIM To investigate immune infiltration-related differentially expressed genes(DEGs)in CC and specifically explored the role and potential molecular mechanisms of complement factor I(CFI).METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics.Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines.Stable CFI-knockdown HT29 and HCT116 cell lines were constructed,and the diverse roles of CFI in vitro were assessed using CCK-8,5-ethynyl-2’-deoxyuridine,wound healing,and transwell assays.Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice.Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.RESULTS Six key immune infiltration-related DEGs were screened,among which the expression of CFI,complement factor B,lymphoid enhancer binding factor 1,and SRY-related high-mobility-group box 4 was upregulated,whereas that of fatty acid-binding protein 1,and bone morphogenic protein-2 was downregulated.Furthermore,CFI could be used as a diagnostic biomarker for CC.Functionally,CFI silencing inhibited CC cell proliferation,migration,invasion,and tumor growth.Mechanistically,CFI knockdown downregulated the expression of key glycolysis-related proteins(glucose transporter type 1,hexokinase 2,lactate dehydrogenase A,and pyruvate kinase M2)and the Wnt pathway-related proteins(β-catenin and c-Myc).Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway,indicating that it could serve as a promising target for therapeutic intervention in CC.
文摘In this editorial,we review the work of Razali et al published in World J Gas-troenterology,with a particular focus on the effect of rs10889677 variation in the phosphatidylinositol 3-kinase(PI3K)pathway and buparlisib on colitis-associated cancer.The role of PI3K in promoting cancer progression has been widely recognized,as it is involved in regulating the survival,differentiation,and prolif-eration of cancer cells.The complement Clq/TNF-related protein 6(CTRP6)is a newer tumor-associated factor.Recent studies have revealed the pro-tumor effect of CTRP6 in gastric cancer,hepatocellular carcinoma,colorectal cancer,and other gastrointestinal tumors through the PI3K pathway.This article attempts to reveal the mechanism through which the CTRP6 affects the development of digestive system tumors through the PI3K pathway by summarizing recent research.
基金National Institutes of Health(NIH):National Heart,Lung,and Blood Institute(NHLBI:R01-HL164772,R01-HL159062,R01-HL146691,T32-HL144456)National Institute of Diabetes and Digestive and Kidney Diseases(NIDDK:R01-DK123259,R01-DK033823)+2 种基金National Center for Advancing Translational Sciences(NCATS:UL1-TR002556-06,UM1-TR004400)(to Gaetano Santulli)Diabetes Action Research and Education Foundation(to Gaetano Santulli)Monique Weill-Caulier and Irma T.Hirschl Trusts(to Gaetano Santulli).
文摘Diabetic cardiomyopathy is a disorder of the cardiac muscle that affects patients with diabetes.The exact mechanisms underlying diabetic cardiomyopathy are mostly unknown,but several factors have been implicated in the pathogenesis of the disease and its progression towards heart failure,including endothelial dysfunction,autonomic neuropathy,metabolic alterations,oxidative stress,and alterations in ion homeostasis,especially calcium transients[1].In Military Medical Research,Jiang et al.[2]sought to determine the functional role of complement factor D(Adipsin)in the pathophysiology of diabetic cardiomyopathy.