期刊文献+
共找到638篇文章
< 1 2 32 >
每页显示 20 50 100
Application of Artificial Neural Networks for the Prediction of Water Quality Variables in the Nile Delta 被引量:4
1
作者 Bahaa Mohamed Khalil Ayman Georges Awadallah +1 位作者 Hussein Karaman Ashraf El-Sayed 《Journal of Water Resource and Protection》 2012年第6期388-394,共7页
The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 loc... The quality of a water body is usually characterized by sets of physical, chemical, and biological parameters, which are mutually interrelated. Since August 1997, monthly records of 33 parameters, monitored at 102 locations on the Nile Delta drainage system, are stored in a National Database operated by the Drainage Research Institute (DRI). Correlation patterns may be found between water quantity and water quality parameters at the same location, or among water quality parameters within a monitoring location or among locations. Serial correlation is also detected in water quality variables. Through the investigation of the level of information redundancy, assessment and redesign of water quality monitoring network aim to improve the overall network efficiency and cost effectiveness. In this study, the potential of the Artificial Neural Network (ANN) on simulating interrelation between water quality parameters is examined. Several ANN inputs, structures and training possibilities are assessed and the best ANN model and modeling procedure is selected. The prediction capabilities of the ANN are compared with the linear regression models with autocorrelated residuals, usually used for this purpose. It is concluded that the ANN models are more accurate than the linear regression models having the same inputs and output. 展开更多
关键词 Artificial Neural Networks Regression with Autocorrelated ERRORS water quality prediction NILE Delta
在线阅读 下载PDF
Application of a Neural Network Technique for Prediction of the Water Quality Index in the Dong Nai River, Vietnam 被引量:4
2
作者 Nguyen Hien Than Che Dinh Ly +1 位作者 Pham Van Tat Nguyen Ngoc Thanh 《Journal of Environmental Science and Engineering(B)》 2016年第7期363-370,共8页
Recent trends in environmental management of water resource have enlarged the demand for predicting techniques that can provide reliable, efficient and accurate water quality. In this case study, the authors applied t... Recent trends in environmental management of water resource have enlarged the demand for predicting techniques that can provide reliable, efficient and accurate water quality. In this case study, the authors applied the Artificial Neural Networks (ANN) to estimate the water quality index on the Dong Nai River flowing through Dong Nai and Binh Duong provinces. The information and data including 10 water quality parameters of the Dong Nai River at 23 monitoring stations were collected during the recorded time period from 2010 to 2014 to build water quality prediction models. The results of the study demonstrated that the Water Quality Index (WQI) forecasted with GRNN was very significant and had high correlation coefficient (R2 = 0.974 and p = 0.0) compared to the real values of the WQI. Moreover, the ANN models provided better predicted values than the multiple regression models did. 展开更多
关键词 Artificial Neural Networks water quality forecast water quality prediction.
在线阅读 下载PDF
Development and application of a GIS-based artificial neural network system for water quality prediction: a case study at the Lake Champlain area 被引量:1
3
作者 LU Fang ZHANG Haoqing LIU Wenquan 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第6期1835-1845,共11页
Artificial Neural Network(ANN)models have been extensively applied in the prediction of water resource variables,and Geographical Information System(GIS)includes powerful functions to visualize spatial data.In order t... Artificial Neural Network(ANN)models have been extensively applied in the prediction of water resource variables,and Geographical Information System(GIS)includes powerful functions to visualize spatial data.In order to provide an efficient tool for environmental assessment and management that combines the advantages of these two modules,a GIS-based ANN water quality prediction system was developed in the present study.The ANN module and ArcGIS Engine module,along with a dynamic database,were imbedded in the system,which integrates water quality prediction via the ANN model and spatial presentation of the model results.The structure of the ANN model could be modified through the graphical user interface to optimize the model performance.The developed system was applied to a real case study for the prediction of the total phosphorus concentration in the Lake Champlain area.The prediction results were verified with the monitoring data,and the performance of the developed model was further evaluated through graphical techniques and quantitative statistical methods.Overall,the developed system provided satisfactory prediction results,and spatial distribution maps of the predicted results were obtained,which coincided with the monitored values.The developed GIS-based ANN water quality prediction system could serve as an efficient tool for engineers and decision makers. 展开更多
关键词 water quality prediction Geographical Information System(GIS) artificial neural network INTEGRATION system development
在线阅读 下载PDF
Combined Method of Chaotic Theory and Neural Networks for Water Quality Prediction
4
作者 ZHANG Shudong LI Weiguang +2 位作者 NAN Jun WANG Guangzhi ZHAO Lina 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第1期71-76,共6页
Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the... Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance . 展开更多
关键词 water quality prediction BP neural network chaotic time series
在线阅读 下载PDF
Application of Time Serial Model in Water Quality Predicting
5
作者 Jiang Wu Jianjun Zhang +7 位作者 Wenwu Tan Hao Lan Sirao Zhang Ke Xiao Li Wang Haijun Lin Guang Sun Peng Guo 《Computers, Materials & Continua》 SCIE EI 2023年第1期67-82,共16页
Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to pr... Water resources are an indispensable and valuable resource for human survival and development.Water quality predicting plays an important role in the protection and development of water resources.It is difficult to predictwater quality due to its random and trend changes.Therefore,amethod of predicting water quality which combines Auto Regressive Integrated Moving Average(ARIMA)and clusteringmodelwas proposed in this paper.By taking thewater qualitymonitoring data of a certain river basin as a sample,thewater quality Total Phosphorus(TP)index was selected as the prediction object.Firstly,the sample data was cleaned,stationary analyzed,and white noise analyzed.Secondly,the appropriate parameters were selected according to the Bayesian Information Criterion(BIC)principle,and the trend component characteristics were obtained by using ARIMA to conduct water quality predicting.Thirdly,the relationship between the precipitation and the TP index in themonitoring water field was analyzed by the K-means clusteringmethod,and the random incremental characteristics of precipitation on water quality changes were calculated.Finally,by combining with the trend component characteristics and the random incremental characteristics,the water quality prediction results were calculated.Compared with the ARIMA water quality prediction method,experiments showed that the proposed method has higher accuracy,and its Mean Absolute Error(MAE),Mean Square Error(MSE),and Mean Absolute Percentage Error(MAPE)were respectively reduced by 44.6%,56.8%,and 45.8%. 展开更多
关键词 ARIMA CLUSTER correlation analysis water quality predicting
在线阅读 下载PDF
Artificial Intelligence in Internet of Things System for Predicting Water Quality in Aquaculture Fishponds
6
作者 Po-Yuan Yang Yu-Cheng Liao Fu-I Chou 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2861-2880,共20页
Aquaculture has long been a critical economic sector in Taiwan.Since a key factor in aquaculture production efficiency is water quality,an effective means of monitoring the dissolved oxygen content(DOC)of aquaculture ... Aquaculture has long been a critical economic sector in Taiwan.Since a key factor in aquaculture production efficiency is water quality,an effective means of monitoring the dissolved oxygen content(DOC)of aquaculture water is essential.This study developed an internet of things system for monitoring DOC by collecting essential data related to water quality.Artificial intelligence technology was used to construct a water quality prediction model for use in a complete system for managing water quality.Since aquaculture water quality depends on a continuous interaction among multiple factors,and the current state is correlated with the previous state,a model with time series is required.Therefore,this study used recurrent neural networks(RNNs)with sequential characteristics.Commonly used RNNs such as long short-term memory model and gated recurrent unit(GRU)model have a memory function that appropriately retains previous results for use in processing current results.To construct a suitable RNN model,this study used Taguchi method to optimize hyperparameters(including hidden layer neuron count,iteration count,batch size,learning rate,and dropout ratio).Additionally,optimization performance was also compared between 5-layer and 7-layer network architectures.The experimental results revealed that the 7-layer GRU was more suitable for the application considered in this study.The values obtained in tests of prediction performance were mean absolute percentage error of 3.7134%,root mean square error of 0.0638,and R-value of 0.9984.Therefore,thewater qualitymanagement system developed in this study can quickly provide practitioners with highly accurate data,which is essential for a timely response to water quality issues.This study was performed in collaboration with the Taiwan Industrial Technology Research Institute and a local fishery company.Practical application of the system by the fishery company confirmed that the monitoring system is effective in improving the survival rate of farmed fish by providing data needed to maintain DOC higher than the standard value. 展开更多
关键词 FISHERY gated recurrent unit hyperparameter optimization long short-term memory Taguchi method water quality prediction
在线阅读 下载PDF
Brain-inspired multimodal approach for effluent quality prediction using wastewater surface images and water quality data 被引量:1
7
作者 Junchen Li Sijie Lin +3 位作者 Liang Zhang Yuheng Liu Yongzhen Peng Qing Hu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第3期69-82,共14页
Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment operations.In this study,we aimed to develop an integrated method for predict... Efficiently predicting effluent quality through data-driven analysis presents a significant advancement for consistent wastewater treatment operations.In this study,we aimed to develop an integrated method for predicting effluent COD and NH3 levels.We employed a 200 L pilot-scale sequencing batch reactor(SBR)to gather multimodal data from urban sewage over 40 d.Then we collected data on critical parameters like COD,DO,pH,NH_(3),EC,ORP,SS,and water temperature,alongside wastewater surface images,resulting in a data set of approximately 40246 points.Then we proposed a brain-inspired image and temporal fusion model integrated with a CNN-LSTM network(BITF-CL)using this data.This innovative model synergized sewage imagery with water quality data,enhancing prediction accuracy.As a result,the BITF-CL model reduced prediction error by over 23%compared to traditional methods and still performed comparably to conventional techniques even without using DO and SS sensor data.Consequently,this research presents a cost-effective and precise prediction system for sewage treatment,demonstrating the potential of brain-inspired models. 展开更多
关键词 Wastewater treatment system water quality prediction Data driven analysis Brain-inspired model Multimodal data Attention mechanism
原文传递
Correlation Analysis of Turbidity and Total Phosphorus in Water Quality Monitoring Data
8
作者 Wenwu Tan Jianjun Zhang +7 位作者 Xing Liu Jiang Wu Yifu Sheng Ke Xiao Li Wang Haijun Lin Guang Sun Peng Guo 《Journal on Big Data》 2023年第1期85-97,共13页
At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the p... At present,water pollution has become an important factor affecting and restricting national and regional economic development.Total phosphorus is one of the main sources of water pollution and eutrophication,so the prediction of total phosphorus in water quality has good research significance.This paper selects the total phosphorus and turbidity data for analysis by crawling the data of the water quality monitoring platform.By constructing the attribute object mapping relationship,the correlation between the two indicators was analyzed and used to predict the future data.Firstly,the monthly mean and daily mean concentrations of total phosphorus and turbidity outliers were calculated after cleaning,and the correlation between them was analyzed.Secondly,the correlation coefficients of different times and frequencies were used to predict the values for the next five days,and the data trend was predicted by python visualization.Finally,the real value was compared with the predicted value data,and the results showed that the correlation between total phosphorus and turbidity was useful in predicting the water quality. 展开更多
关键词 Correlation analysis CLUSTER water quality predict water quality monitoring data
在线阅读 下载PDF
A benchmark-based method for evaluating hyperparameter optimization techniques of neural networks for surface water quality prediction
9
作者 Xuan Wang Yan Dong +2 位作者 Jing Yang Zhipeng Liu Jinsuo Lu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第5期13-27,共15页
Neural networks(NNs)have been used extensively in surface water prediction tasks due to computing algorithm improvements and data accumulation.An essential step in developing an NN is the hyperparameter selection.In p... Neural networks(NNs)have been used extensively in surface water prediction tasks due to computing algorithm improvements and data accumulation.An essential step in developing an NN is the hyperparameter selection.In practice,it is common to manually determine hyperparameters in the studies of NNs in water resources tasks.This may result in considerable randomness and require significant computation time;therefore,hyperparameter optimization(HPO)is essential.This study adopted five representatives of the HPO techniques in the surface water quality prediction tasks,including the grid sampling(GS),random search(RS),genetic algorithm(GA),Bayesian optimization(BO)based on the Gaussian process(GP),and the tree Parzen estimator(TPE).For the evaluation of these techniques,this study proposed a method:first,the optimal hyperparameter value sets achieved by GS were regarded as the benchmark;then,the other HPO techniques were evaluated and compared with the benchmark in convergence,optimization orientation,and consistency of the optimized values.The results indicated that the TPE-based BO algorithm was recommended because it yielded stable convergence,reasonable optimization orientation,and the highest consistency rates with the benchmark values.The optimization consistency rates via TPE for the hyperparameters hidden layers,hidden dimension,learning rate,and batch size were 86.7%,73.3%,73.3%,and 80.0%,respectively.Unlike the evaluation of HPO techniques directly based on the prediction performance of the optimized NN in a single HPO test,the proposed benchmark-based HPO evaluation approach is feasible and robust. 展开更多
关键词 Neural networks Hyperparameter optimization Surface water quality prediction Bayes optimization Genetic algorithm
原文传递
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测
10
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法
11
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于不同投喂策略的循环水养殖系统氨氮预测模型 被引量:1
12
作者 孙雪倩 李丽 +2 位作者 董双林 田相利 张盛坤 《水产学报》 北大核心 2025年第1期135-146,共12页
【目的】实现对循环水养殖系统水体中总氨氮(TAN)浓度的预测,并研究投喂策略对TAN预测模型预测精度的影响。【方法】本研究测定了斑石鲷养殖池内7个水质指标,采用主成分分析(PCA)和Pearson相关性分析法对数据进行前处理并形成三种数据集... 【目的】实现对循环水养殖系统水体中总氨氮(TAN)浓度的预测,并研究投喂策略对TAN预测模型预测精度的影响。【方法】本研究测定了斑石鲷养殖池内7个水质指标,采用主成分分析(PCA)和Pearson相关性分析法对数据进行前处理并形成三种数据集:原始数据集(OD)、Pearson数据集(Pearson D)和PCA数据集(PCAD),结合随机森林(RF)、BP神经网络(BP)、门控循环单元(GRU)、长短期记忆网络(LSTM)这4种模型,对两种投喂策略下养殖水体中的TAN浓度进行预测,并采用均方根误差(RMSE)、均方误差(MSE)、平均绝对误差(MAE)和R方值(R2-score)对模型进行评估。【结果】RF模型的预测效果最差,随着投喂策略的改变,GRU与LSTM模型预测精度较高且稳定,而BP模型预测精度波动较大。不同投喂阶段筛选出的最优预测模型不同,人工和自动化投喂阶段的最优模型分别为Pearson D-BP和Pearson D-GRU模型,在整个实验周期中,PCAD-LSTM模型、Pearson D-LSTM模型和Pearson D-GRU模型预测性能较好。人工投喂阶段与自动化投喂阶段相比,Pearson DLSTM模型的RMSE、MSE和MAE分别降低了0.0072、0.0019和0.0036,R2-score升高了0.1075;Pearson D-GRU模型的RMSE、MSE和MAE分别降低了0.0030、0.0008和0.0030,R2-score升高了0.0826。【结论】投喂策略会影响TAN预测模型的预测精度,结合Pearson分析的GRU或LSTM模型可很好地实现该系统养殖水体中TAN的预测,该结果可为RAS氨氮预测技术的优化提供参考。 展开更多
关键词 斑石鲷 循环水养殖系统 投喂策略 总氨氮 水质预测模型
在线阅读 下载PDF
引江补汉工程运行对三峡水源区水环境的影响预测
13
作者 吴贞晖 王孟 +3 位作者 刘扬扬 吴比 肖洋 张可可 《长江科学院院报》 北大核心 2025年第2期194-203,共10页
引江补汉工程实施将引起三峡库区水文情势和水质变化。为预测引江补汉工程运行对水源区水环境的影响,构建水源区二维水动力水质模型,分析丰、平、枯、特枯水年情景下水源区水文情势、水动力变化和化学需氧量(COD)、氨氮、总磷浓度时空... 引江补汉工程实施将引起三峡库区水文情势和水质变化。为预测引江补汉工程运行对水源区水环境的影响,构建水源区二维水动力水质模型,分析丰、平、枯、特枯水年情景下水源区水文情势、水动力变化和化学需氧量(COD)、氨氮、总磷浓度时空分布特征,并提出相应的水环境保护措施。结果表明:引江补汉工程实施后,龙潭溪取水口水域水动力条件显著增强,各月流速增幅达0~0.04 m/s;工程实施后取水口水质受引水拖拽作用趋向于主库区,不同典型年下该断面COD、氨氮、总磷年均变化幅度分别介于-2.31%~0.41%、4.18%~8.20%、0.77%~1.82%,非引水时段有发生富营养化风险。研究成果可为引江补汉工程水源区水环境保护与治理提供理论与技术支撑。 展开更多
关键词 引江补汉工程 三峡水源区 水环境影响预测 数值模拟 二维水动力水质模型 水环境保护与治理
在线阅读 下载PDF
基于SEM和RF的和田绿洲区浅层高氟地下水水质主控因素分析与氟浓度分布预测
14
作者 蒋悦 郑天亮 +3 位作者 李景吉 杨晴雯 黄振富 王双成 《安全与环境工程》 北大核心 2025年第2期264-272,共9页
高氟地下水是全球广泛分布的环境地质问题,本研究基于结构方程模型(SEM)和随机森林(RF)算法开展新疆和田绿洲区浅层高氟地下水水质主控因素及氟浓度分布预测研究。结果表明:干旱气候条件下矿物溶解(β=0.99)及离子交换作用(β=0.68)对... 高氟地下水是全球广泛分布的环境地质问题,本研究基于结构方程模型(SEM)和随机森林(RF)算法开展新疆和田绿洲区浅层高氟地下水水质主控因素及氟浓度分布预测研究。结果表明:干旱气候条件下矿物溶解(β=0.99)及离子交换作用(β=0.68)对地下水水质具有重要贡献,与地下水矿物饱和指数、氯碱指数及Gibbs模型分析结果一致;基于RF算法构建的预测模型指示浅层高氟地下水主要分布于绿洲区中部,特征变量贡献度分析表明蒸发浓缩作用以及碱性pH值条件是高氟地下水形成的重要调控因素。研究结果可为和田绿洲区浅层高氟地下水的分布预测及环境调控机制提供新认识,也可为区域安全供水战略提供指导。 展开更多
关键词 和田绿洲区 浅层高氟地下水 结构方程模型(SEM) 随机森林(RF)算法 水质评价与预测
在线阅读 下载PDF
基于数据驱动的污水处理系统水质预测研究进展
15
作者 刘浩威 陈霖 +4 位作者 李巨峰 晏欣 冉照宽 栾辉 陈春茂 《工业水处理》 北大核心 2025年第4期1-9,共9页
传统水质监测手段耗时长、成本高且数据时效性差,污水处理系统参数反馈和调整周期长,在人工智能迅猛发展的背景下,构建基于数据驱动的水质预测技术有重要意义。从大数据收集与处理层面出发,梳理了国内外水质数据收集、清洗策略以及特征... 传统水质监测手段耗时长、成本高且数据时效性差,污水处理系统参数反馈和调整周期长,在人工智能迅猛发展的背景下,构建基于数据驱动的水质预测技术有重要意义。从大数据收集与处理层面出发,梳理了国内外水质数据收集、清洗策略以及特征工程等方法的特点和应用状况。在此基础上介绍了不同类型水质预测模型的预测效果与特点,统计回归模型、机器学习模型和深度学习模型都展现出一定的优势,但不同数据集质量上存在显著差异,难以获得普适的预测模型。结合大数据特征和数据集质量,采取合理的数据预处理手段,应用不同类型的预测方法或组合,可以显著提高模型预测准确性。最后综述了现阶段水质预测模型的应用现状、存在的问题以及未来发展方向,以期为水质预测模型研究、开发与应用提供参考。 展开更多
关键词 水质预测 特征工程 机器学习 深度学习 集成学习
在线阅读 下载PDF
基于机器学习模型的水体富营养化预测
16
作者 廖艺惠 程晓琼 +6 位作者 贺锦瑞 郭修远 吴澳京 张利超 邱俊 崔龄 胡良 《江西化工》 2025年第1期1-4,9,共5页
水体富营养化问题日趋严峻,是全球水环境领域长期以来面临的巨大挑战。藻类的异常生长增殖,破坏了水生生态环境,甚至对动植物和人类产生了威胁。积极进行水体富营养化预测,制定高效调控策略,是保护水体生态环境的关键。机器学习能够较... 水体富营养化问题日趋严峻,是全球水环境领域长期以来面临的巨大挑战。藻类的异常生长增殖,破坏了水生生态环境,甚至对动植物和人类产生了威胁。积极进行水体富营养化预测,制定高效调控策略,是保护水体生态环境的关键。机器学习能够较好地利用已知信息,通过高度的非线性映射刻画复杂因素间的相互关系。该文探讨了几种常见的机器学习模型在不同环境因子下对藻华预测的应用。针对不同环境变量与水体营养状态的复杂性,选择最佳适用的机器学习模型,对提高预测精准度至关重要。结合前人研究结果展开分析,有助于基于关键环境变量扩展藻类种群动态机器学习模型的能力,为未来对不同水域富营养化预测、采取积极应对策略提供实践参考。 展开更多
关键词 机器学习 水质参数 富营养化 预测
在线阅读 下载PDF
基于改进聚类的LSTM水质预测模型研究
17
作者 胡悦 李泽 +1 位作者 邱佳华 张奕 《计算机仿真》 2025年第1期473-479,484,共8页
太湖流域因其独特的跨区域性,难以综合治理整体流域水环境,实现对太湖整体水质的精准预测一直以来都是治理太湖任务的重中之重。目前的水质预测模型在太湖流域上的应用仍存在精度低、泛化能力弱等局限性。针对以上问题,从研究水质中溶解... 太湖流域因其独特的跨区域性,难以综合治理整体流域水环境,实现对太湖整体水质的精准预测一直以来都是治理太湖任务的重中之重。目前的水质预测模型在太湖流域上的应用仍存在精度低、泛化能力弱等局限性。针对以上问题,从研究水质中溶解氧(Dissolved Oxygen, DO)指标数据出发,提出了一种基于改进的粒子群优化算法(Particle Swarm Optimization, PSO)。首先,通过皮尔森相关系数确定DO特征因素,并通过聚类找出相似站点数据集;采用改进的粒子群算法算法改进K-means初始聚类中心选择问题,引入轮廓系数选择最佳聚类簇数并作为评估聚类性能的指标;最后将聚类后数据集作为输入样本建立最终太湖水质预测模型。实验结果表明,提出的RODDPSO-K-LSTM太湖水质预测模型在均方根误差(Root Mean Square Error, RMSE)、均方误差(Mean Square Error, MSE)、平均绝对误差(Mean Absolute Error, MAE)、拟合度(R-squared)上的表现均优于经典LSTM预测模型,仿真结果证明,提出的水质预测模型的可行性与有效性。 展开更多
关键词 水质预测 粒子群优化 聚类算法 长短期记忆神经网络
在线阅读 下载PDF
基于LOF-EEMD-LSTM模型的污水水质预测研究
18
作者 游旭 陈会娟 余昭旭 《自动化仪表》 2025年第2期51-56,共6页
为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通... 为了精准预测污水中溶解氧(DO)浓度值,通过局部异常因子(LOF)算法对深圳某污水处理厂5个月的数据进行分析。利用集合经验模态分解(EEMD)-长短期记忆(LSTM)神经网络模型,对曝气控制系统的出水水质影响较大的DO浓度进行准确预测。首先,通过LOF算法剔除数据中的异常值。然后,使用EEMD算法筛选出输入数据中强相关的特征子序列。最后,将特征子序列输入LSTM模型中以得到DO预测值。试验结果表明,LOF-EEMD-LSTM模型的准确率可达95.4%、平均绝对误差(MAE)为0.036、均方误差(MSE)为0.0038、均方根误差(RMSE)为0.0614、平均绝对百分比误差(MAPE)为0.046。以上指标相比于反向传播(BP)神经网络、随机森林、LSTM、LOF-LSTM、EEMD-LSTM和变分模态分解-最小二乘支持向量机(VMD-LSSVM)预测模型皆有明显的提升。所提模型的预测精度较高,具有较高的实用价值。 展开更多
关键词 污水处理 水质预测 溶解氧 局部异常因子算法 集合经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
西淝河采煤沉陷区水环境特征分析及水质预测
19
作者 丁媛媛 方超 +2 位作者 郭凤舞 张文君 张程 《中国资源综合利用》 2025年第1期129-133,共5页
引江济淮工程的西淝河线路穿过潘谢矿区的西淝河采煤沉陷区(主要包括张集洼地、谢桥洼地等沉陷洼地)和港河下游的姬沟湖、西淝河下游的花家湖等天然湖泊,它是江水北送段的水量调蓄区之一。为保障西淝河线水质安全和水量充沛,根据引江济... 引江济淮工程的西淝河线路穿过潘谢矿区的西淝河采煤沉陷区(主要包括张集洼地、谢桥洼地等沉陷洼地)和港河下游的姬沟湖、西淝河下游的花家湖等天然湖泊,它是江水北送段的水量调蓄区之一。为保障西淝河线水质安全和水量充沛,根据引江济淮工程前期研究,当西淝河线取水口水质达到地表水Ⅲ类标准时,优先利用淮河干流调蓄,启用西淝河泵站直接从淮河干流抽水;当遭遇淮河干流污染团或水质不达标时,暂停从淮河干流抽水,利用西淝河采煤沉陷区所蓄清水,抽水北送。为了研究西淝河采煤沉陷区作为调蓄区的可能性,开展西淝河采煤沉陷区水环境特征分析,预测西淝河下游水质。采用一二维耦合水动力-水质数学模型,针对西淝河采煤塌陷区现状地形沉陷情景,开展不同来流条件的塌陷区水质模拟预测,对采煤沉陷区水质进行分析,为引江济淮江水北送段工程提供基础数据支撑。 展开更多
关键词 西淝河采煤沉陷区 一二维耦合水动力-水质数学模型 水环境特征 水质预测
在线阅读 下载PDF
基于CEEMDAN-ISSA-GRU混合的水质预测模型
20
作者 马倩倩 赵丽琴 +1 位作者 聂会 焦建格 《计算机仿真》 2025年第1期501-507,共7页
准确预测河流水质可以有效解决水污染防治和水质监管等问题。然而,由于水质序列具有非平稳性、随机性和非线性,导致预测精度较低。现提出一种基于完全自适应噪声集合经验模态分解(CEEMDAN)、模糊熵(FE)和改进的门控循环单元(GRU)混合的... 准确预测河流水质可以有效解决水污染防治和水质监管等问题。然而,由于水质序列具有非平稳性、随机性和非线性,导致预测精度较低。现提出一种基于完全自适应噪声集合经验模态分解(CEEMDAN)、模糊熵(FE)和改进的门控循环单元(GRU)混合的水质预测模型。首先采用CEEMDAN将水质序列分解为若干个本征模态(IMF),并以FE为判据重构IMF序列,实现降噪目的。然后,利用改进的麻雀搜索算法(ISSA)确定GRU的超参数,提高GRU模型的性能和泛化能力。最后,将降噪后数据输入到ISSA-GRU模型进行预测。实验结果表明,与比较模型相比,所提出的模型具有更好的预测精度和误差性能,RMSE、MAPE、MAE分别为0.2518、0.1824和1.9441%,比基线GRU模型分别降低了40.93%、46.29%、46.41%。 展开更多
关键词 水质预测 完全自适应噪声集合经验模态分解 模糊熵 门控循环单元 改进的麻雀搜索算法
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部