期刊文献+
共找到12,485篇文章
< 1 2 250 >
每页显示 20 50 100
基于stacking融合机制的自动驾驶伦理决策模型 被引量:1
1
作者 刘国满 盛敬 罗玉峰 《计算机应用研究》 北大核心 2025年第2期462-468,共7页
虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽... 虽然自动驾驶技术在线路规划和驾驶控制方面取得较大进展,但遇到伦理困境时,当前自动驾驶汽车仍然很难作出确定、合理的决策,导致人们对自动驾驶汽车安全驾驶产生怀疑和担忧。所以有必要研究自动驾驶伦理决策模型和机制,使得自动驾驶汽车在伦理困境下能够作出合理决策。针对以上问题,设计了基于stacking融合机制的伦理决策模型,对机器学习和深度学习进行深度融合。一方面将基于特征依赖关系的朴素贝叶斯模型(ACNB)、加权平均一阶贝叶斯模型(WADOE)和自适应模糊模型(AFD)作为stacking融合机制上基学习器。依据先前准确率,设定各自模型权重,再运用加权平均法,计算决策结果。然后将该决策结果作为元学习器训练集,对元学习器进行训练,构建stacking融合模型。最后,运用验证集分别对深度学习模型和stacking融合模型进行验证,依据验证中平均损失率和准确率以及测试中正确率,评价和比较深度学习模型和stacking融合机制决策效果。结果表明,深度学习模型平均损失率最小为0.64,最大平均准确率为0.7,最高正确率为0.61。stacking融合机制平均损失率最小为0.35,最大平均准确率为0.90,最高正确率为0.75,说明stacking融合机制相对于深度学习模型,决策结果准确率和正确率方面有了较大改进。 展开更多
关键词 自动驾驶汽车 伦理决策 stacking融合机制 深度学习
在线阅读 下载PDF
基于IHHO-Stacking集成模型的车辆驾驶性评估
2
作者 莫易敏 王相 +2 位作者 王哲 蒋华梁 李琼 《汽车技术》 北大核心 2025年第3期39-45,共7页
为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型... 为解决车辆驾驶性主观评价一致性差及客观评价无法反映主观感受的问题,提出了一种基于堆叠(Stacking)集成学习方法的评价模型,首先研究了车辆加速工况特性,定义了工况驾驶性客观评价指标,使用评价指标作为输入特征训练Stacking集成模型,并且使用改进的哈里斯鹰优化(IHHO)算法优化了Stacking集成模型,提高了预测性能。最后通过道路试验表明,IHHO-Stacking集成模型的性能均优于单个机器学习模型,IHHO-Stacking集成模型预测合格率达95%,能够更有效完成驾驶性评价。 展开更多
关键词 驾驶性 主观评价 改进的哈里斯鹰算法 stacking 集成模型 客观评价
在线阅读 下载PDF
Stacking算法对凝给水系统故障诊断的适用性研究
3
作者 陈砚桥 孙彤 顾任利 《舰船科学技术》 北大核心 2025年第1期138-142,共5页
针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状... 针对船用凝给水系统设备之间耦合关系较强,对该系统的研究只是选取部分参数而并非像设备一样基本涵盖全部特征参数,且该系统在实际运行过程中可以通过自调节来掩盖某些已发生的故障从而无法准确形成运行参数和故障间的映射关系这一现状,以传统单一机器学习算法为基础,通过拓展建立针对Stacking算法的多分类器性能评价指标,准确寻找运行参数和故障之间的映射关系,解决了多分类器性能评价难题。并利用样本数据设计出比较Stacking算法和单一算法综合性能的试验方法,验证了Stacking模型在凝给水系统故障诊断任务中的适用性和优越性。 展开更多
关键词 凝给水系统 stacking算法 故障诊断
在线阅读 下载PDF
考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测
4
作者 冉启武 石卓见 +2 位作者 刘阳 黄杰 张宇航 《电网技术》 北大核心 2025年第3期1098-1108,I0071-I0075,共16页
为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合... 为提高综合能源系统多元负荷分解水平及预测模型的整体性能,提出考虑复合指标优化模态分解和Stacking集成的综合能源系统多元负荷预测方法。首先以排列熵结合互信息为适应度函数,利用金豺优化算法自适应获取变分模态分解的最优参数组合,进而将多元负荷序列分解为本征模态函数集合;其次,通过基于反向传播(back propagation,BP)神经网络扰动的平均影响值(mean impact value,MIV)算法对与多元负荷相关的气象、日期及负荷因素进行特征筛选,从而为多元负荷构建高耦合度的特征矩阵;充分考虑到各单一模型的差异性及优势性,在采用k折交叉验证法减少过拟合的基础上,构建Stacking集成学习模型对多元负荷进行预测;最后采用美国亚利桑那州立大学坦佩校区多元负荷数据集进行实例验证,结果显示所提方法在电、冷、热负荷预测中的平均绝对百分比误差分别达到了0.903%、2.713%和1.616%,预测精度相比其他预测模型具有较大提升。 展开更多
关键词 多元负荷预测 综合能源系统 平均影响值算法 stacking集成学习 金豺优化算法 复合指标
在线阅读 下载PDF
基于Stacking回归模型的超导材料临界温度预测方法研究
5
作者 何素贞 杨冬平 《延边大学学报(自然科学版)》 2025年第1期32-36,共5页
为了更好地预测超导材料临界温度,提出了一种基于Stacking回归模型的超导材料临界温度预测方法.该方法利用化学元素周期表的序数和原子数百分比构建特征向量,然后通过结合Extra Trees、Ridge Regression和XGBoost 3种算法的Stacking回... 为了更好地预测超导材料临界温度,提出了一种基于Stacking回归模型的超导材料临界温度预测方法.该方法利用化学元素周期表的序数和原子数百分比构建特征向量,然后通过结合Extra Trees、Ridge Regression和XGBoost 3种算法的Stacking回归模型对临界温度进行预测.研究结果表明:该方法可较好地预测超导材料临界温度(决定系数R^(2)为0.93),且优于KamH提出的方法.与采用复杂特征工程结合机器学习的方法相比,该方法在简便性和有效性方面也具有一定优势。研究结果为超导材料临界温度的智能预测提供了新思路. 展开更多
关键词 stacking模型 超导材料 临界温度 机器学习 评价指标
在线阅读 下载PDF
rtTorTIM:基于多模态特征融合和Stacking集成学习的实时Tor流量识别方法
6
作者 王宇飞 刘强 +3 位作者 张唯贞 伍晓洁 李佳雯 王煜恒 《计算机工程与科学》 北大核心 2025年第2期238-246,共9页
以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融... 以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。 展开更多
关键词 Tor匿名网络 多模态特征提取 实时流量识别 stacking集成学习 机器学习
在线阅读 下载PDF
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components
7
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
基于Stacking-SHAP的煤自燃倾向性影响因素研究
8
作者 崔忠麒 徐娅煊 苏皓 《煤炭技术》 CAS 2025年第1期150-155,共6页
为对煤自燃倾向性做出准确的预测,挖掘不同煤样属性对煤自燃倾向性的贡献程度,提出基于Stacking-SHAP的煤自燃倾向性预测模型。分别将煤体自身属性及其自燃倾向性综合判定指数作为模型输入和输出。该模型融合支持向量回归(SVR)、极限梯... 为对煤自燃倾向性做出准确的预测,挖掘不同煤样属性对煤自燃倾向性的贡献程度,提出基于Stacking-SHAP的煤自燃倾向性预测模型。分别将煤体自身属性及其自燃倾向性综合判定指数作为模型输入和输出。该模型融合支持向量回归(SVR)、极限梯度提升归回树(XGBoost)、随机森林(RandomForest)、梯度提升决策树(GBDT),并利用网格搜索法对各基础模型参数进行优化,同时结合SHAP算法对不同影响因素的贡献度进行计算。结果显示,优化后的SVR、XGBoost、RF、GBDT和Stacking的判定系数R^(2)分别为0.933、0.887、0.950、0.925、0.984。在煤自燃倾向性影响因素中,重要性程度靠前的特征依次是氧含量、挥发分含量、脂肪烃峰面积值、C/H、羟基峰面积值以及总孔体积共6种特征。模型的建立为煤自燃倾向性预测与煤自燃灾害防治提供了一种新方法。 展开更多
关键词 煤自燃倾向性 stacking SHAP 机器学习 数据挖掘
在线阅读 下载PDF
基于Stacking模型融合算法的风电功率预测方法
9
作者 张雪原 蔡思烨 +4 位作者 刘巧宏 朱坚 包晓炜 夏玉剑 陈极 《电力与能源》 2025年第1期61-66,共6页
随着新能源在新型电力系统中渗透率的日益增加,对风电场功率预测的准确性能要求也不断提升。为提高风电功率预测的准确性和可靠性,设计了以线性回归、K邻近、随机森林算法为特征提取层,以轻量梯度提升机为回归预测层的Stacking模型融合... 随着新能源在新型电力系统中渗透率的日益增加,对风电场功率预测的准确性能要求也不断提升。为提高风电功率预测的准确性和可靠性,设计了以线性回归、K邻近、随机森林算法为特征提取层,以轻量梯度提升机为回归预测层的Stacking模型融合算法。以某风电场近年运行数据为案例,验证了该基于Stacking模型融合算法的预测方法相较于任一单一机器学习算法都具有更高的预测精度。 展开更多
关键词 风力发电 stacking模型融合算法 随机森林 K邻近 负荷预测
在线阅读 下载PDF
Thermoelectric Modulation of Neat Ti_(3)C_(2)T_(x) MXenes by Finely Regulating the Stacking of Nanosheets
10
作者 Junhui Tang Renyang Zhu +3 位作者 Ya-Hsin Pai Yan Zhao Chen Xu Ziqi Liang 《Nano-Micro Letters》 2025年第4期347-362,共16页
Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility... Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility.Among them,the ultrahigh electrical conductivity(σ)and tunable band structures of benchmark Ti_(3)C_(2)T_(x) MXene demonstrate its good potential as thermoelectric(TE)materials.However,both the large variation ofσreported in the literature and the intrinsically low Seebeck coefficient(S)hinder the practical applications.Herein,this study has for the first time systematically investigated the TE properties of neat Ti_(3)C_(2)T_(x) films,which are finely modulated by exploiting different dispersing solvents,controlling nanosheet sizes and constructing composites.First,deionized water is found to be superior for obtaining closely packed MXene sheets relative to other polar solvents.Second,a simultaneous increase in both S andσis realized via elevating centrifugal speed on MXene aqueous suspensions to obtain small-sized nanosheets,thus yielding an ultrahigh power factor up to~156μW m^(-1) K^(-2).Third,S is significantly enhanced yet accompanied by a reduction inσwhen constructing MXene-based nanocomposites,the latter of which is originated from the damage to the intimate stackings of MXene nanosheets.Together,a correlation between the TE properties of neat Ti_(3)C_(2)T_(x) films and the stacking of nanosheets is elucidated,which would stimulate further exploration of MXene TEs. 展开更多
关键词 MXene Nanosheet stacking Electrical conductivity Seebeck coefficient THERMOELECTRICS
在线阅读 下载PDF
融合BMA的Stacking模型对用户网络购物行为的预测
11
作者 刘帅 《信息技术与信息化》 2025年第2期91-94,共4页
随着互联网和电子商务的蓬勃发展,网络购物成为人们生活的常态。精准预测用户的网络购物行为,能为相关行业提供有价值的决策参考。基于此,文章基于集成学习法进行预测,为改进传统Stacking模型中只能结合基分类器预测结果的情况,在构建St... 随着互联网和电子商务的蓬勃发展,网络购物成为人们生活的常态。精准预测用户的网络购物行为,能为相关行业提供有价值的决策参考。基于此,文章基于集成学习法进行预测,为改进传统Stacking模型中只能结合基分类器预测结果的情况,在构建Stacking模型时融入贝叶斯模型平均(bayesian model averaging,BMA),体现各基分类器对预测结果的贡献程度,有效结合多个模型优势。利用累积重要性筛选出有代表性的特征变量,评估模型性能以确定合适的基分类器组合,并结合逻辑回归元学习器构建最终的Stacking模型,基于构建好的模型融合BMA进行预测。实验结果表明,融入BMA后的Stacking模型预测用户网络购物行为效果较好。 展开更多
关键词 用户网络购物 集成学习 stacking BMA 贡献程度
在线阅读 下载PDF
Subsurface Temperature and Salinity Structures Inversion Using a Stacking-Based Fusion Model from Satellite Observations in the South China Sea
12
作者 Can LUO Mengya HUANG +3 位作者 Shoude GUAN Wei ZHAO Fengbin TIAN Yuan YANG 《Advances in Atmospheric Sciences》 2025年第1期204-220,共17页
Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are ... Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS. 展开更多
关键词 subsurface temperature and salinity structures clustering algorithms stacking strategy temperature and salinity fusion the South China Sea
在线阅读 下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:2
13
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 multi-layer regression algorithm fusion stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
在线阅读 下载PDF
基于组合时域特征提取和Stacking集成学习的燃煤锅炉NO_(x)排放浓度预测 被引量:3
14
作者 唐振浩 隋梦璇 曹生现 《中国电机工程学报》 EI CSCD 北大核心 2024年第16期6551-6564,I0022,共15页
为提高火电厂锅炉出口NO_(x)排放浓度的预测精度,提出一种考虑组合时域特征的Stacking集成学习模型。首先,为挖掘数据深层信息,采用时序分析、完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with ada... 为提高火电厂锅炉出口NO_(x)排放浓度的预测精度,提出一种考虑组合时域特征的Stacking集成学习模型。首先,为挖掘数据深层信息,采用时序分析、完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis,CEEMDAN)和统计学计算数据标准差、偏度等特征的方法进行组合时域特征提取以构建重构数据;其次,考虑到重构数据中存在的冗余变量对模型的精度有所影响,利用遗传算法(genetic algorithm,GA)对重构数据进行特征降维;最后,为充分发挥各个模型的优势以提高模型的预测精度,构建以极限学习机(extreme learning machines,ELM)、深度神经网络(deep neural networks,DNN)、多层感知器(multilayer perceptron,MLP)、极限梯度提升算法(extreme gradient boosting,XGBoost)为基模型和以回声状态网络(echo state network,ESN)为元模型的Stacking集成学习NOx排放浓度预测模型。实验结果表明:该预测模型在不同数据集下都有着不错的预测效果,预测误差均小于2%,能够对锅炉NOx排放浓度实现精准预测。 展开更多
关键词 NO_(x)排放浓度 时序特征 时域特征 数据重构 stacking集成学习
在线阅读 下载PDF
基于Stacking融合模型的Web攻击检测方法 被引量:2
15
作者 万巍 石鑫 +2 位作者 魏金侠 李畅 龙春 《信息安全学报》 CSCD 2024年第1期84-94,共11页
随着计算机技术与互联网技术的飞速发展,Web应用在人们的生产与生活中扮演着越来越重要的角色。但是在人们的日常生活与工作中带来了更多便捷的同时,却也带来了严重的安全隐患。在开发Web应用的过程中,大量不规范的新技术应用引入了很... 随着计算机技术与互联网技术的飞速发展,Web应用在人们的生产与生活中扮演着越来越重要的角色。但是在人们的日常生活与工作中带来了更多便捷的同时,却也带来了严重的安全隐患。在开发Web应用的过程中,大量不规范的新技术应用引入了很多的网站漏洞。攻击者可以利用Web应用开发过程中的漏洞发起攻击,当Web应用受到攻击时会造成严重的数据泄露和财产损失等安全问题,因此Web安全问题一直受到学术界和工业界的关注。超文本传输协议(HTTP)是一种在Web应用中广泛使用的应用层协议。随着HTTP协议的大量使用,在HTTP请求数据中包含了大量的实际入侵,针对HTTP请求数据进行Web攻击检测的研究也开始逐渐被研究人员所重视。本文提出了一种基于Stacking融合模型的Web攻击检测方法,针对每一条文本格式的HTTP请求数据,首先进行格式化处理得到既定的格式,结合使用Word2Vec方法和TextCNN模型将其转换成向量化表示形式;然后利用Stacking模型融合方法,将不同的子模型(使用配置不同尺寸过滤器的Text-CNN模型搭配不同的检测算法)进行融合搭建出Web攻击检测模型,与融合之前单独的子模型相比在准确率、召回率、F1值上都有所提升。本文所提出的Web攻击检测模型在公开数据集和真实环境数据上都取得了更加稳定的检测性能。 展开更多
关键词 入侵检测 stacking 融合模型 WEB攻击
在线阅读 下载PDF
基于Stacking集成学习的声波时差测井曲线复原研究 被引量:1
16
作者 曹志民 丁璐 韩建 《化工自动化及仪表》 CAS 2024年第3期470-476,共7页
声波时差测井曲线在石油勘探中发挥着不可或缺的作用,但是受地质或仪器的影响,经常会出现部分甚至完整的声波测井曲线缺失的情况。针对这一问题,提出了一种基于Stacking集成学习的声波时差测井曲线复原方法,该模型使用随机森林(RF)、梯... 声波时差测井曲线在石油勘探中发挥着不可或缺的作用,但是受地质或仪器的影响,经常会出现部分甚至完整的声波测井曲线缺失的情况。针对这一问题,提出了一种基于Stacking集成学习的声波时差测井曲线复原方法,该模型使用随机森林(RF)、梯度提升决策树(GBDT)、轻量梯度提升机(LightGBM)和极限梯度提升(XGBoost)作为基学习器,支持向量回归(SVR)作为元学习器,同时采用5折交叉验证的方法。实验选取了大庆油田某区块的实际测井数据,分别进行了同井和异井间的缺失声波时差测井曲线复原实验,结果表明,所提方法比单一模型预测更加准确,验证了此方法的可行性。 展开更多
关键词 声波时差测井曲线 stacking集成学习 测井曲线复原 5折交叉验证
在线阅读 下载PDF
基于Stacking融合的LSTM-SA-RBF短期负荷预测 被引量:2
17
作者 方娜 邓心 肖威 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第4期131-137,共7页
为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简... 为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简化模型计算过程;基于Stacking框架,结合长短期记忆(long and short-term memory,LSTM)-自注意力机制(self-attention mechanism,SA)、径向基(radial base functions,RBF)神经网络和线性回归方法集成新的组合模型,同时利用交叉验证方法避免模型过拟合;选取PJM和澳大利亚电力负荷数据集进行验证。仿真结果表明,与其他模型比较,所提模型预测精度高。 展开更多
关键词 奇异谱分析 stacking算法 长短期记忆网络 径向基神经网络 短期负荷预测
在线阅读 下载PDF
基于Stacking融合模型的PHEV复合储能系统实时能量分配策略 被引量:1
18
作者 吴忠强 马博岩 《计量学报》 CSCD 北大核心 2024年第1期73-81,共9页
为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进... 为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进行训练,并综合GRU网络以及XGBoost算法,提出了一种Stacking集成学习框架下多模型融合的能量分配策略。仿真结果表明,与仅使用单一电池的储能系统相比,基于Stacking融合模型的实时能量分配系统在UDDS和US06两种循环工况下,电池峰值电流分别降低了48.7%和50.8%,有效削弱了电池的峰值电流,提升了电池的整体性能。 展开更多
关键词 电学计量 复合储能系统 插电式混合动力汽车 动态规划 XGBoost stacking融合模型
在线阅读 下载PDF
基于VMD-Stacking集成学习的新能源发电功率预测模型 被引量:1
19
作者 慈铁军 廖子恒 +2 位作者 任梦晨 梁音 吴自高 《电力科学与工程》 2024年第9期14-23,共10页
在“双碳”背景下,新能源发电功率的准确预测对于电力系统的平稳运行至关重要。提出了一种自适应性的VMD-Stacking集成模型,以解决数据集变化时传统学习模型预测精度不高的问题。利用皮尔逊相关系数选择与发电功率强相关的气象特征,通... 在“双碳”背景下,新能源发电功率的准确预测对于电力系统的平稳运行至关重要。提出了一种自适应性的VMD-Stacking集成模型,以解决数据集变化时传统学习模型预测精度不高的问题。利用皮尔逊相关系数选择与发电功率强相关的气象特征,通过变分模态分解(Variational mode decomposition,VMD)将功率数据分解为多个模态分量,由此构成新的数据集。运用贝叶斯优化算法调整超参数,综合评判随机森林等8种学习模型的评价指标,自适应选出预测性能最优的3种模型作为基学习器,并选用稳定性和泛化能力相对较强的线性回归(Linear Regression)作为元学习器,建立Stacking融合模型。对各分量的预测值叠加,得到最终预测结果。以某新能源场站为例,对风、光电站的发电功率进行预测。算例验证结果表明,该模型在面对不同数据集时,体现出较强的适应性,预测性能也得到显著的提升。 展开更多
关键词 新能源功率预测 stacking集成学习 VMD 皮尔逊相关系数 贝叶斯超参数优化
在线阅读 下载PDF
基于Stacking集成学习的热轧带钢凸度诊断模型
20
作者 张殿华 李贺 +3 位作者 武文腾 霍光帆 孙杰 彭文 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期3673-3682,共10页
在热连轧生产过程中,凸度是重要的质量指标,过程数据的非平衡性限制了数据驱动模型的预测效果,为提高模型的预测精度,提出一种融合SMOTE和Stacking集成算法的热轧带钢凸度诊断模型。首先,采用SMOTE过采样方法处理凸度相关数据集,降低数... 在热连轧生产过程中,凸度是重要的质量指标,过程数据的非平衡性限制了数据驱动模型的预测效果,为提高模型的预测精度,提出一种融合SMOTE和Stacking集成算法的热轧带钢凸度诊断模型。首先,采用SMOTE过采样方法处理凸度相关数据集,降低数据非平衡分布导致的影响;然后,构建以轻量级梯度提升机(LightGBM)、支持向量机(SVM)、K近邻(KNN)和随机森林(RF)为基学习器,逻辑回归(LR)为元学习器的Stacking集成模型,最后,使用某2160 mm热轧带钢实际生产数据进行模型验证。研究结果表明,诊断模型的准确率、少数类召回率、平衡F分数、几何平均值和ROC曲线下面积分别为0.9580、0.9595、0.9573、0.9589和0.9579,与XGBoost、LightGBM、KNN、SVM和随机森林模型对比,预测效果最优,证明了Stacking集成算法能够有效增强诊断模型的泛化能力,具有优良的诊断性能。 展开更多
关键词 带钢凸度诊断 stacking集成模型 非平衡数据 SMOTE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部