期刊文献+
共找到282篇文章
< 1 2 15 >
每页显示 20 50 100
Dynamic SLAM Visual Odometry Based on Instance Segmentation:A Comprehensive Review
1
作者 Jiansheng Peng Qing Yang +3 位作者 Dunhua Chen Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2024年第1期167-196,共30页
Dynamic Simultaneous Localization and Mapping(SLAM)in visual scenes is currently a major research area in fields such as robot navigation and autonomous driving.However,in the face of complex real-world envi-ronments,... Dynamic Simultaneous Localization and Mapping(SLAM)in visual scenes is currently a major research area in fields such as robot navigation and autonomous driving.However,in the face of complex real-world envi-ronments,current dynamic SLAM systems struggle to achieve precise localization and map construction.With the advancement of deep learning,there has been increasing interest in the development of deep learning-based dynamic SLAM visual odometry in recent years,and more researchers are turning to deep learning techniques to address the challenges of dynamic SLAM.Compared to dynamic SLAM systems based on deep learning methods such as object detection and semantic segmentation,dynamic SLAM systems based on instance segmentation can not only detect dynamic objects in the scene but also distinguish different instances of the same type of object,thereby reducing the impact of dynamic objects on the SLAM system’s positioning.This article not only introduces traditional dynamic SLAM systems based on mathematical models but also provides a comprehensive analysis of existing instance segmentation algorithms and dynamic SLAM systems based on instance segmentation,comparing and summarizing their advantages and disadvantages.Through comparisons on datasets,it is found that instance segmentation-based methods have significant advantages in accuracy and robustness in dynamic environments.However,the real-time performance of instance segmentation algorithms hinders the widespread application of dynamic SLAM systems.In recent years,the rapid development of single-stage instance segmentationmethods has brought hope for the widespread application of dynamic SLAM systems based on instance segmentation.Finally,possible future research directions and improvementmeasures are discussed for reference by relevant professionals. 展开更多
关键词 Dynamic SLAM instance segmentation visual odometry
在线阅读 下载PDF
Overfitting Reduction of Pose Estimation for Deep Learning Visual Odometry 被引量:5
2
作者 Xiaohan Yang Xiaojuan Li +2 位作者 Yong Guan Jiadong Song Rui Wang 《China Communications》 SCIE CSCD 2020年第6期196-210,共15页
Error or drift is frequently produced in pose estimation based on geometric"feature detection and tracking"monocular visual odometry(VO)when the speed of camera movement exceeds 1.5 m/s.While,in most VO meth... Error or drift is frequently produced in pose estimation based on geometric"feature detection and tracking"monocular visual odometry(VO)when the speed of camera movement exceeds 1.5 m/s.While,in most VO methods based on deep learning,weight factors are in the form of fixed values,which are easy to lead to overfitting.A new measurement system,for monocular visual odometry,named Deep Learning Visual Odometry(DLVO),is proposed based on neural network.In this system,Convolutional Neural Network(CNN)is used to extract feature and perform feature matching.Moreover,Recurrent Neural Network(RNN)is used for sequence modeling to estimate camera’s 6-dof poses.Instead of fixed weight values of CNN,Bayesian distribution of weight factors are introduced in order to effectively solve the problem of network overfitting.The 18,726 frame images in KITTI dataset are used for training network.This system can increase the generalization ability of network model in prediction process.Compared with original Recurrent Convolutional Neural Network(RCNN),our method can reduce the loss of test model by 5.33%.And it’s an effective method in improving the robustness of translation and rotation information than traditional VO methods. 展开更多
关键词 visual odometry neural network pose estimation bayesian distribution OVERFITTING
在线阅读 下载PDF
Science Letters:Visual odometry for road vehicles—feasibility analysis 被引量:2
3
作者 SOTELO Miguel-angel GARCíA Roberto +4 位作者 PARRA Ignacio FERNNDEZ David GAVILN Miguel LVAREZ Sergio NARANJO José-eugenio 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期2017-2020,共4页
Estimating the global position of a road vehicle without using GPS is a challenge that many scientists look forward to solving in the near future. Normally, inertial and odometry sensors are used to complement GPS mea... Estimating the global position of a road vehicle without using GPS is a challenge that many scientists look forward to solving in the near future. Normally, inertial and odometry sensors are used to complement GPS measures in an attempt to provide a means for maintaining vehicle odometry during GPS outage. Nonetheless, recent experiments have demonstrated that computer vision can also be used as a valuable source to provide what can be denoted as visual odometry. For this purpose, vehicle motion can be estimated using a non-linear, photogrametric approach based on RAndom SAmple Consensus (RANSAC). The results prove that the detection and selection of relevant feature points is a crucial factor in the global performance of the visual odometry algorithm. The key issues for further improvement are discussed in this letter. 展开更多
关键词 3D visual odometry Ego-motion estimation RAndom SAmple Consensus (RANSAC) Photogrametric approach
在线阅读 下载PDF
Human Visual Attention Mechanism-Inspired Point-and-Line Stereo Visual Odometry for Environments with Uneven Distributed Features 被引量:1
4
作者 Chang Wang Jianhua Zhang +2 位作者 Yan Zhao Youjie Zhou Jincheng Jiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期191-204,共14页
Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly dist... Visual odometry is critical in visual simultaneous localization and mapping for robot navigation.However,the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed features because dense features occupy excessive weight.Herein,a new human visual attention mechanism for point-and-line stereo visual odometry,which is called point-line-weight-mechanism visual odometry(PLWM-VO),is proposed to describe scene features in a global and balanced manner.A weight-adaptive model based on region partition and region growth is generated for the human visual attention mechanism,where sufficient attention is assigned to position-distinctive objects(sparse features in the environment).Furthermore,the sum of absolute differences algorithm is used to improve the accuracy of initialization for line features.Compared with the state-of-the-art method(ORB-VO),PLWM-VO show a 36.79%reduction in the absolute trajectory error on the Kitti and Euroc datasets.Although the time consumption of PLWM-VO is higher than that of ORB-VO,online test results indicate that PLWM-VO satisfies the real-time demand.The proposed algorithm not only significantly promotes the environmental adaptability of visual odometry,but also quantitatively demonstrates the superiority of the human visual attention mechanism. 展开更多
关键词 visual odometry Human visual attention mechanism Environmental adaptability Uneven distributed features
在线阅读 下载PDF
A Study on Planetary Visual Odometry Optimization: Time Constraints and Reliability 被引量:1
5
作者 Enrica Zereik Davide Ducco Fabio Frassinelli Giuseppe Casalino 《Computer Technology and Application》 2011年第5期378-388,共11页
Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any ... Robust and efficient vision systems are essential in such a way to support different kinds of autonomous robotic behaviors linked to the capability to interact with the surrounding environment, without relying on any a priori knowledge. Within space missions, above all those involving rovers that have to explore planetary surfaces, vision can play a key role in the improvement of autonomous navigation functionalities: besides obstacle avoidance and hazard detection along the traveling, vision can in fact provide accurate motion estimation in order to constantly monitor all paths executed by the rover. The present work basically regards the development of an effective visual odometry system, focusing as much as possible on issues such as continuous operating mode, system speed and reliability. 展开更多
关键词 visual odometry stereo vision speeded up robust feature (SURF) planetary rover
在线阅读 下载PDF
Semi-Direct Visual Odometry and Mapping System with RGB-D Camera
6
作者 Xinliang Zhong Xiao Luo +1 位作者 Jiaheng Zhao Yutong Huang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期83-93,共11页
In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camer... In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources. 展开更多
关键词 RGB-D simultaneous LOCALIZATION and mapping(SLAM) visual odometry LOCALIZATION 3D MAPPING LOOP CLOSURE detection
在线阅读 下载PDF
基于稀疏直接法的水下单目视觉惯性里程计
7
作者 王益美 黄琰 冯浩 《测绘通报》 北大核心 2025年第1期94-100,共7页
针对水下视觉导航在弱纹理环境下定位精度低及稳健性较差的问题,本文提出了一种基于稀疏直接法的水下单目视觉惯性里程计。该方法基于像素灰度不变的假设,通过优化光度误差估计相机位姿,避免了特征点提取和匹配的复杂过程,从而提高了导... 针对水下视觉导航在弱纹理环境下定位精度低及稳健性较差的问题,本文提出了一种基于稀疏直接法的水下单目视觉惯性里程计。该方法基于像素灰度不变的假设,通过优化光度误差估计相机位姿,避免了特征点提取和匹配的复杂过程,从而提高了导航的实时性和稳健性;同时,结合惯性测量单元(IMU)的数据,利用误差状态卡尔曼滤波(ESKF)进行数据融合进一步减小误差,以提高自主水下机器人(AUV)在水下复杂环境导航的稳定性和精度。试验结果表明,误差达厘米级且与单纯的视觉算法相比,有所减小,证明了该系统能够有效融合视觉和惯性信息,在水下导航领域具有较高的精度和稳健性。 展开更多
关键词 稀疏直接法 自主水下机器人 惯性测量单元 视觉惯性里程计 误差状态卡尔曼滤波
在线阅读 下载PDF
一种基于多状态颜色一致性约束的激光-惯性-视觉里程计
8
作者 刘春明 于光远 +3 位作者 李琮 施鹏程 孙世颖 徐勇军 《电讯技术》 北大核心 2025年第1期119-126,共8页
基于视觉、激光等单一传感器的定位方法难以适应多样化的环境,围绕激光雷达、惯性测量单元和相机3种模态的传感器信息源,针对激光雷达(Light Detection and Ranging,LiDAR)与视觉测量没有充分关联的问题,提出了一种基于多状态颜色一致... 基于视觉、激光等单一传感器的定位方法难以适应多样化的环境,围绕激光雷达、惯性测量单元和相机3种模态的传感器信息源,针对激光雷达(Light Detection and Ranging,LiDAR)与视觉测量没有充分关联的问题,提出了一种基于多状态颜色一致性约束的激光雷达-惯性-视觉里程计方法,以提高系统的鲁棒性和定位精度。该方法紧耦合了激光雷达-惯性里程计(LiDAR-Inertial Odometry,LIO)和视觉-惯性里程计(Visual-Inertial Odometry,VIO)两个子系统,并定义了带有颜色信息的全局地图表示形式。LIO子系统中点云经过运动补偿后,直接用于构建点到面的残差。VIO子系统利用全局地图中点的深度信息,根据滑动窗口中多个相机状态观测到同一地图点颜色的一致性,构建光度误差约束,并通过不变扩展卡尔曼滤波(Extended Kalman Filter,EKF)状态估计器进行系统状态更新。在南洋理工大学发布的公共数据集上进行了实验,所提方法在该数据集不同序列上的绝对轨迹误差平均值为0.402 m。 展开更多
关键词 多传感器融合定位 状态估计 视觉-惯性里程计 激光-惯性里程计
在线阅读 下载PDF
复杂环境下无人机视觉惯性里程计设计
9
作者 汤琴琴 王立喜 +3 位作者 侍经纬 李春辉 刘云平 敖洋钒 《中国惯性技术学报》 北大核心 2025年第2期140-146,共7页
为提高无人机在快速移动、光照变化大等复杂环境下的位姿精度,设计了一种单目事件相机/单目标准相机/惯性测量装置(IMU)融合的视觉惯性里程计。首先利用IMU的角速度和视觉惯性里程计后端的线速度补偿事件帧的旋转和平移,生成高质量事件... 为提高无人机在快速移动、光照变化大等复杂环境下的位姿精度,设计了一种单目事件相机/单目标准相机/惯性测量装置(IMU)融合的视觉惯性里程计。首先利用IMU的角速度和视觉惯性里程计后端的线速度补偿事件帧的旋转和平移,生成高质量事件帧;其次采用BEBLID描述子提取算法增强事件帧和标准帧的特征匹配能力,使用基于帧的特征跟踪方法对事件帧和标准帧进行独立跟踪,结合随机抽样一致算法和三角测量进行深度估计,并以基于优化的方式将三种传感器进行紧耦合。最后在UZH-FPV数据集上进行了实验验证。实验结果表明,在明暗变化大的场景下,所提方法的无人机平均绝对定位误差相比PL-EVIO减小了19.6%;在高速场景下,相比Ultimate SLAM减小了46.9%。 展开更多
关键词 事件相机 视觉惯性里程计 运动补偿 图像匹配 无人机
在线阅读 下载PDF
基于迭代自适应的多状态约束视觉/惯性融合定位算法
10
作者 节笑晗 刘宁 +2 位作者 沈凯 戚文昊 刘薛勤 《太原理工大学学报》 北大核心 2025年第2期356-364,共9页
【目的】针对现有双目视觉/惯性里程计算法在遮蔽空间下救援人员进行定位计算时无法实时精准捕捉数据的问题,提出了一种迭代自适应多状态约束卡尔曼滤波双目视觉/惯性里程计算法(NN-MSCKF)。【方法】首先分析遮蔽空间下救援人员剧烈、... 【目的】针对现有双目视觉/惯性里程计算法在遮蔽空间下救援人员进行定位计算时无法实时精准捕捉数据的问题,提出了一种迭代自适应多状态约束卡尔曼滤波双目视觉/惯性里程计算法(NN-MSCKF)。【方法】首先分析遮蔽空间下救援人员剧烈、复杂运动的跟踪效率和实时性需求,设计迭代自适应算法,利用窗口数据迭代对激励进行判断,触发初始化条件构造量测更新;其次研究地图点个数和像素区分度评估与筛选方式,引入地图点优化机制,提高对地图点进行评估和筛选的实时性;最后搭建仿真与试验平台对算法进行验证。【结果】实验结果表明,该算法相比MSCKF算法实时性提高1 s,全局精度提升55%,局部精度提升88.9%,验证了本方法的有效性。 展开更多
关键词 视觉/惯性里程计 多状态约束 迭代自适应 地图点优化
在线阅读 下载PDF
基于机器视觉的车辆碰撞检测方法研究
11
作者 洪伟天 齐腾飞 +2 位作者 刘文昊 李少伟 朱国华 《电子设计工程》 2025年第3期8-12,共5页
为了快速识别道路车辆碰撞事故,提出了一种基于机器视觉的车辆碰撞检测方法。该方法使用YOLOv5深度神经网络模型,实现对车辆的快速识别;在此基础上,引入卡尔曼滤波以及匈牙利匹配算法,完成对车辆的多目标追踪;利用视觉里程计算法,得出... 为了快速识别道路车辆碰撞事故,提出了一种基于机器视觉的车辆碰撞检测方法。该方法使用YOLOv5深度神经网络模型,实现对车辆的快速识别;在此基础上,引入卡尔曼滤波以及匈牙利匹配算法,完成对车辆的多目标追踪;利用视觉里程计算法,得出车辆速度、重合度、轨迹偏转量等参数,通过检测参数是否发生异常来判断碰撞的发生。测试结果表明,与现有算法相比,该方法在识别正确率上有较大的提升。 展开更多
关键词 碰撞检测 机器视觉 多目标追踪 视觉里程计
在线阅读 下载PDF
基于互相关和旋转约束的视觉惯性里程计在线时间校准算法
12
作者 蒙军杰 熊军林 《计算机应用研究》 北大核心 2025年第1期288-292,共5页
在融合相机和惯性测量单元(IMU)的数据推测机器人的运动轨迹时,传感器测量记录的时间点对用于估计轨迹的视觉惯性里程计(VIO)的鲁棒性和准确性至关重要。然而,由于传感器数据到达接收端的延迟存在差异,图像数据流和IMU数据流之间通常存... 在融合相机和惯性测量单元(IMU)的数据推测机器人的运动轨迹时,传感器测量记录的时间点对用于估计轨迹的视觉惯性里程计(VIO)的鲁棒性和准确性至关重要。然而,由于传感器数据到达接收端的延迟存在差异,图像数据流和IMU数据流之间通常存在不可避免的时间偏置,为此提出了一种基于互相关和旋转对齐的视觉惯性里程计在线时间校准的算法。首先使用对极几何和预积分算法分别得到相机和IMU各自的相对位姿,并计算出相机的角速度;然后根据相机与IMU的角速度进行互相关计算,得到初步的时间偏置估计;最后利用相机和IMU相对位姿进行旋转约束,通过优化误差函数得到更精确的相对时间偏置估计,该时间偏置值随后用于平移传感器的时间轴以进行校准。实验表明,该算法能够减缓时间偏置对里程计精度带来的影响,并使得VIO能够在具有更大时间偏置范围的数据流下稳定运行。 展开更多
关键词 在线时间校准 旋转约束 视觉惯性里程计
在线阅读 下载PDF
基于改进ORB特征的视觉里程计算法
13
作者 邓宇翔 陈丽 +1 位作者 吴泽州 张凯波 《计算机应用与软件》 北大核心 2025年第3期233-237,297,共6页
针对视觉里程计算法中特征点提取速度慢和存在冗余的问题,提出一种基于改进ORB特征的视觉里程计算法。设计基于2R准则的特征区域提取策略,减少特征点提取范围,加快算法速率。使用基于对角8点法的FAST算法得到更多的角点,改善FAST角点分... 针对视觉里程计算法中特征点提取速度慢和存在冗余的问题,提出一种基于改进ORB特征的视觉里程计算法。设计基于2R准则的特征区域提取策略,减少特征点提取范围,加快算法速率。使用基于对角8点法的FAST算法得到更多的角点,改善FAST角点分布,并采用基于深度的四叉树算法对特征点进行均匀化。进行特征匹配以求解相机位姿。实验结果表明,基于改进ORB特征的视觉里程计算法在相机位姿估计时有更好的精确性和实时性。 展开更多
关键词 2R准则 特征区域 深度四叉树 视觉里程计
在线阅读 下载PDF
一种煤矿井下多传感器融合定位与建图算法
14
作者 高铭阳 张志刚 +1 位作者 刘其鑫 李小波 《煤矿安全》 北大核心 2025年第2期233-241,共9页
针对煤矿智能化建设对同时定位与建图(SLAM)技术的需求,以及现有SLAM技术在煤矿井下使用中因环境特征退化导致应用受限的问题,提出了一种适于煤矿井下的多传感器融合SLAM算法。算法由视觉里程计系统和激光SLAM系统2部分组成;视觉里程计... 针对煤矿智能化建设对同时定位与建图(SLAM)技术的需求,以及现有SLAM技术在煤矿井下使用中因环境特征退化导致应用受限的问题,提出了一种适于煤矿井下的多传感器融合SLAM算法。算法由视觉里程计系统和激光SLAM系统2部分组成;视觉里程计系统由近红外相机与惯导传感器构成;激光SLAM系统基于特征点法激光SLAM框架,利用视觉里程计信息代替IMU预积分,并针对煤矿巷道结构改进激光点云特征分类方法,优化雷达帧间扫描匹配;在视觉里程计系统中设计异常处理机制,避免因点云特征退化造成IMU误差累计,导致定位建图失败。在煤矿模拟巷道中算法测试结果表明:算法能够在巷道环境中可靠运行,并且算法稳定性和鲁棒性相较现有SLAM算法有明显提升。 展开更多
关键词 煤矿智能化 同时定位与建图 多传感器融合 激光SLAM 视觉里程计
在线阅读 下载PDF
基于多传感器融合的无人车定位方法
15
作者 陈旭升 代勇 +3 位作者 温承超 秦冠一 周智晨 吴佳欣 《沈阳理工大学学报》 2025年第2期34-40,47,共8页
无人车单一传感器同步定位与地图构建(simultaneous localization and mapping,SLAM)算法鲁棒性较差,现有多传感器融合方案则较少考虑车辆运动约束,导致横向定位漂移。为此,提出一种基于ORB-SLAM的视觉-惯性-车轮紧耦合优化方法,将三者... 无人车单一传感器同步定位与地图构建(simultaneous localization and mapping,SLAM)算法鲁棒性较差,现有多传感器融合方案则较少考虑车辆运动约束,导致横向定位漂移。为此,提出一种基于ORB-SLAM的视觉-惯性-车轮紧耦合优化方法,将三者约束统一纳入后端的捆集优化(bundle adjustment,BA)。首先给出视觉里程计、惯性测量单元(inertial measurement unit,IMU)和基于阿克曼车辆模型的车轮里程计残差模型,然后建立基于ORB-SLAM的单目视觉-惯性-车轮融合的SLAM系统优化框架。在KAIST数据集和实际校园场景下的实验结果表明,与其他常用SLAM方法相比,本文改进算法有效减少了误差累积,定位与地图构建结果更稳健且精确。 展开更多
关键词 同步定位与地图构建 无人车 视觉-惯性-车轮定位技术 多传感器融合
在线阅读 下载PDF
An RGB-D Camera Based Visual Positioning System for Assistive Navigation by a Robotic Navigation Aid 被引量:6
16
作者 He Zhang Lingqiu Jin Cang Ye 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1389-1400,共12页
There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can ... There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces. 展开更多
关键词 Assistive navigation pose estimation robotic navigation aid(RNA) simultaneous localization and mapping visual-inertial odometry visual positioning system(VPS)
在线阅读 下载PDF
Visual SLAM Based on Object Detection Network:A Review 被引量:1
17
作者 Jiansheng Peng Dunhua Chen +3 位作者 Qing Yang Chengjun Yang Yong Xu Yong Qin 《Computers, Materials & Continua》 SCIE EI 2023年第12期3209-3236,共28页
Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed ... Visual simultaneous localization and mapping(SLAM)is crucial in robotics and autonomous driving.However,traditional visual SLAM faces challenges in dynamic environments.To address this issue,researchers have proposed semantic SLAM,which combines object detection,semantic segmentation,instance segmentation,and visual SLAM.Despite the growing body of literature on semantic SLAM,there is currently a lack of comprehensive research on the integration of object detection and visual SLAM.Therefore,this study aims to gather information from multiple databases and review relevant literature using specific keywords.It focuses on visual SLAM based on object detection,covering different aspects.Firstly,it discusses the current research status and challenges in this field,highlighting methods for incorporating semantic information from object detection networks into mileage measurement,closed-loop detection,and map construction.It also compares the characteristics and performance of various visual SLAM object detection algorithms.Lastly,it provides an outlook on future research directions and emerging trends in visual SLAM.Research has shown that visual SLAM based on object detection has significant improvements compared to traditional SLAM in dynamic point removal,data association,point cloud segmentation,and other technologies.It can improve the robustness and accuracy of the entire SLAM system and can run in real time.With the continuous optimization of algorithms and the improvement of hardware level,object visual SLAM has great potential for development. 展开更多
关键词 Object detection visual SLAM visual odometry loop closure detection semantic map
在线阅读 下载PDF
移动机器人视觉里程计技术研究综述 被引量:5
18
作者 陈明方 黄良恩 +2 位作者 王森 张永霞 陈中平 《农业机械学报》 EI CAS CSCD 北大核心 2024年第3期1-20,共20页
随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLA... 随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。 展开更多
关键词 视觉里程计 特征法 直接法 深度学习 同步定位与地图构建 数据集
在线阅读 下载PDF
轻量化特征点及可变形描述符提取网络
19
作者 方宝富 张克傲 +1 位作者 王浩 袁晓辉 《模式识别与人工智能》 CSCD 北大核心 2024年第12期1107-1120,共14页
特征点提取是视觉同时定位与建图(Visual Simultaneous Localization and Mapping,VSLAM)的重要步骤之一,近年来出现的基于深度学习的特征点提取方法通常效率较低,无法满足实时性要求,也不能提供描述符所需的几何不变性.为此,文中提出... 特征点提取是视觉同时定位与建图(Visual Simultaneous Localization and Mapping,VSLAM)的重要步骤之一,近年来出现的基于深度学习的特征点提取方法通常效率较低,无法满足实时性要求,也不能提供描述符所需的几何不变性.为此,文中提出轻量化特征点及可变形描述符提取网络(Lightweight Keypoint and Deformable Descriptor Extraction Network,LKDD-Net),在主干网络中引入轻量化网络模块,提高特征提取效率.LKDD-Net可同时获取特征点位置和可变形描述符.为了验证LKDD-Net的有效性,设计视觉里程计系统.在HPatches、TUM RGB-D公共数据集上的实验表明,LKDD-Net可在GPU上实时运行,特征点提取时间仅为8.3 ms,同时在各种场景中保持高精度和强鲁棒性,而且其构成的视觉里程计系统性能较优. 展开更多
关键词 特征点提取 描述符 轻量化网络 视觉里程计
在线阅读 下载PDF
面向动态环境的视觉惯性定位方法
20
作者 付明磊 卫宁伟 +5 位作者 金宇强 张文安 张逸婷 刘彪 PRAKAPOVICH Ryhor SYCHOU Uladzislau 《传感技术学报》 CAS CSCD 北大核心 2024年第2期268-277,共10页
针对传统的视觉惯性里程计在动态环境下定位精度低和系统鲁棒性差等问题,提出了面向动态环境的视觉惯性定位方法。首先,利用语义分割提取环境中的语义信息,借助环境先验信息识别出动态物体。同时,采用深度生成网络对动态物体区域进行背... 针对传统的视觉惯性里程计在动态环境下定位精度低和系统鲁棒性差等问题,提出了面向动态环境的视觉惯性定位方法。首先,利用语义分割提取环境中的语义信息,借助环境先验信息识别出动态物体。同时,采用深度生成网络对动态物体区域进行背景修复,生成只包含静态场景的图像,并将生成的图像用于后续的特征提取和跟踪,以减弱动态物体的影响。后端构建了紧耦合的图优化模型,将视觉数据与IMU数据相互融合,在滑动窗口中以非线性优化的方式估计位姿。实验结果表明,方法可以有效降低动态物体对定位的影响,提高系统的定位精度和鲁棒性。 展开更多
关键词 同步定位与地图构建 视觉惯性里程计 动态场景 区域修复
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部