DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particl...DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particle swarm optimization tuned fuzzy sliding mode controller under starting and load step change conditions. The aim of the control is to regulate the output voltage beneath the load change. The model of the hybrid particle swarm optimization tuned fuzzy sliding mode controller is implemented using Sim Power Systems toolbox of MATLAB SIMULINK. Performance of the proposed dynamic novel control under step load change condition is investigated.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主...轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。展开更多
A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural...A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.展开更多
In this paper, a Sliding mode controller design method for frequency regulation in an interconnected power system is presented. A sliding surface having four parameters has been selected for the load frequency control...In this paper, a Sliding mode controller design method for frequency regulation in an interconnected power system is presented. A sliding surface having four parameters has been selected for the load frequency control (LFC) system model. In order to achieve an optimal result, the parameter of the controller is obtained by grey wolf optimization (GWO) and particle swarm optimization (PSO) techniques. The objective function for optimization has been considered as the integral of square of error of deviation in frequency and tie-line power exchange. The method has been validated through simulation of a single area as well as a multi-area power system. The performance of the Sliding mode controller has also been analyzed for parametric variation and random loading patterns. The performance of the proposed method is better than recently reported methods. The performance of the proposed Sliding mode controller via GWO has 88.91% improvement in peak value of frequency deviation over the method of Anwar and Pan in case study 1 and similar improvement has been observed over different case studies taken from the literature.展开更多
Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic genera...Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.展开更多
文摘DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particle swarm optimization tuned fuzzy sliding mode controller under starting and load step change conditions. The aim of the control is to regulate the output voltage beneath the load change. The model of the hybrid particle swarm optimization tuned fuzzy sliding mode controller is implemented using Sim Power Systems toolbox of MATLAB SIMULINK. Performance of the proposed dynamic novel control under step load change condition is investigated.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
文摘轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。
基金Project(51075289) supported by the National Natural Science Foundation of ChinaProject(20122014) supported by the Doctor Foundation of Taiyuan University of Science and Technology,China
文摘A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.
文摘In this paper, a Sliding mode controller design method for frequency regulation in an interconnected power system is presented. A sliding surface having four parameters has been selected for the load frequency control (LFC) system model. In order to achieve an optimal result, the parameter of the controller is obtained by grey wolf optimization (GWO) and particle swarm optimization (PSO) techniques. The objective function for optimization has been considered as the integral of square of error of deviation in frequency and tie-line power exchange. The method has been validated through simulation of a single area as well as a multi-area power system. The performance of the Sliding mode controller has also been analyzed for parametric variation and random loading patterns. The performance of the proposed method is better than recently reported methods. The performance of the proposed Sliding mode controller via GWO has 88.91% improvement in peak value of frequency deviation over the method of Anwar and Pan in case study 1 and similar improvement has been observed over different case studies taken from the literature.
文摘Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.