Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r...Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.展开更多
The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing pr...The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing presents substantial security challenges,rendering it a prominent target for sophisticated malware attacks.Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources.This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation(GENOME)framework,a novel solution that is intended to improve the performance of malware detection and classification in peripheral computing environments.GENOME optimizes data storage and computa-tional efficiency by converting malware artifacts into compact,structured sequences through a Deoxyribonucleic Acid(DNA)encoding mechanism.The framework employs two DNA encoding algorithms,standard and compressed,which substantially reduce data size while preserving high detection accuracy.The Edge-IIoTset dataset was used to conduct experiments that showed that GENOME was able to achieve high classification performance using models such as Random Forest and Logistic Regression,resulting in a reduction of data size by up to 42%.Further evaluations with the CIC-IoT-23 dataset and Deep Learning models confirmed GENOME’s scalability and adaptability across diverse datasets and algorithms.The potential of GENOME to address critical challenges,such as the rapid mutation of malware,real-time processing demands,and resource limitations,is emphasized in this study.GENOME offers comprehensive protection for peripheral computing environments by offering a security solution that is both efficient and scalable.展开更多
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ...In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.展开更多
Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodo...Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency.展开更多
A Service Level Agreement(SLA) is a legal contract between any two parties to ensure an adequate Quality of Service(Qo S). Most research on SLAs has concentrated on protecting the user data through encryption. However...A Service Level Agreement(SLA) is a legal contract between any two parties to ensure an adequate Quality of Service(Qo S). Most research on SLAs has concentrated on protecting the user data through encryption. However, these methods can not supervise a cloud service provider(CSP) directly. In order to address this problem, we propose a privacy-based SLA violation detection model for cloud computing based on Markov decision process theory. This model can recognize and regulate CSP's actions based on specific requirements of various users. Additionally, the model could make effective evaluation to the credibility of CSP, and can monitor events that user privacy is violated. Experiments and analysis indicate that the violation detection model can achieve good results in both the algorithm's convergence and prediction effect.展开更多
Networks are composed with servers and rather larger amounts of terminals and most menace of attack and virus come from terminals. Eliminating malicious code and ac cess or breaking the conditions only under witch att...Networks are composed with servers and rather larger amounts of terminals and most menace of attack and virus come from terminals. Eliminating malicious code and ac cess or breaking the conditions only under witch attack or virus can be invoked in those terminals would be the most effec tive way to protect information systems. The concept of trusted computing was first introduced into terminal virus immunity. Then a model of security domain mechanism based on trusted computing to protect computers from proposed from abstracting the general information systems. The principle of attack resistant and venture limitation of the model was demonstrated by means of mathematical analysis, and the realization of the model was proposed.展开更多
Security is a key problem for the development of Cloud Computing. A common service security architecture is a basic abstract to support security research work. The authorization ability in the service security faces m...Security is a key problem for the development of Cloud Computing. A common service security architecture is a basic abstract to support security research work. The authorization ability in the service security faces more complex and variable users and environment. Based on the multidimensional views, the service security architecture is described on three dimensions of service security requirement integrating security attributes and service layers. An attribute-based dynamic access control model is presented to detail the relationships among subjects, objects, roles, attributes, context and extra factors further. The model uses dynamic control policies to support the multiple roles and flexible authority. At last, access control and policies execution mechanism were studied as the implementation suggestion.展开更多
Fog computing is a new paradigm providing network services such as computing, storage between the end users and cloud. The distributed and open structure are the characteristics of fog computing, which make it vulnera...Fog computing is a new paradigm providing network services such as computing, storage between the end users and cloud. The distributed and open structure are the characteristics of fog computing, which make it vulnerable and very weak to security threats. In this article, the interaction between vulnerable nodes and malicious nodes in the fog computing is investigated as a non-cooperative differential game. The complex decision making process is reviewed and analyzed. To solve the game, a fictitious play-based algorithm is which the vulnerable node and the malicious nodes reach a feedback Nash equilibrium. We attain optimal strategy of energy consumption with Qo S guarantee for the system, which are conveniently operated and suitable for fog nodes. The system simulation identifies the propagation of malicious nodes. We also determine the effects of various parameters on the optimal strategy. The simulation results support a theoretical foundation to limit malicious nodes in fog computing, which can help fog service providers make the optimal dynamic strategies when different types of nodes dynamically change their strategies.展开更多
Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physi...Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk.Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications.As an extension of the cloud,the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications.Although there are some research efforts in this area,edge-based security designs for IoT applications are still in its infancy.This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs.We first present an edge-centric IoT architecture.Then,we extensively review the edge-based IoT security research efforts in the context of security architecture designs,firewalls,intrusion detection systems,authentication and authorization protocols,and privacy-preserving mechanisms.Finally,we propose our insight into future research directions and open research issues.展开更多
Current delegation mechanism of grid security infrastructure (GSI) can't satisfy the requirement of dynamic, distributed and practical security in grid virtual organization. To improve this situation, a TC-enabled ...Current delegation mechanism of grid security infrastructure (GSI) can't satisfy the requirement of dynamic, distributed and practical security in grid virtual organization. To improve this situation, a TC-enabled GSI is discussed in this paper. With TC-enabled GSI, a practical delegation solution is proposed in this paper through enforcing fine granularity policy over distributed platforms with the emerging trusted computing technologies. Here trusted platform module is treated as a tamper-resistance module to improve grid security infrastructure. With the implement of Project Daonity, it is demonstrated that the solution could gain dynamic and distributed security in grid environment.展开更多
A security kernel architeclrne built on trusted computing platform in thelight of thinking about trusted computing is presented According to this architecture, a newsecurity module TCB (Trusted Computing Base) is adde...A security kernel architeclrne built on trusted computing platform in thelight of thinking about trusted computing is presented According to this architecture, a newsecurity module TCB (Trusted Computing Base) is added to the operation system kerneland twooperation interface modes are provided for the sake of self-protection. The security kernel isdivided into two parts and trusted mechanism Is separated from security functionality. Ihe TCBmodule implements the trusted mechanism such as measurement and attestation, while the othercomponents of security kernel provide security functionality based on these mechanisms. Thisarchitecture takes full advantage of functions provided by trusted platform and clearly defines thesecurity perimeter of TCB so as to assure stlf-securily from architcetmal vision. We also presentfunction description of TCB and discuss the strengths and limitations comparing with other relatedresearches.展开更多
In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to p...In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.展开更多
With the rapid development of wireless networks,the Ad Hoc networks are widely used in many fields,but the current network security solutions for the Ad Hoc network are not competitive enough.So the critical technolog...With the rapid development of wireless networks,the Ad Hoc networks are widely used in many fields,but the current network security solutions for the Ad Hoc network are not competitive enough.So the critical technology of Ad Hoc network applications shall be how to implement the security scheme.Here the discussions are focused on the specific solution against the security threats which the Ad Hoc networks will face,the methodology of a management model which uses trusted computing technology to solve Ad Hoc network security problems,and the analysis and verification for the security of this model.展开更多
Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industr...Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industry adoption and migration of traditional computing services to the cloud,one of the main challenges in cybersecurity is to provide mechanisms to secure these technologies.This work proposes a Data Security Framework for cloud computing services(CCS)that evaluates and improves CCS data security from a software engineering perspective by evaluating the levels of security within the cloud computing paradigm using engineering methods and techniques applied to CCS.This framework is developed by means of a methodology based on a heuristic theory that incorporates knowledge generated by existing works as well as the experience of their implementation.The paper presents the design details of the framework,which consists of three stages:identification of data security requirements,management of data security risks and evaluation of data security performance in CCS.展开更多
Cloud computing provides services to users through Internet.This open mode not only facilitates the access by users,but also brings potential security risks.In cloud computing,the risk of data leakage exists between u...Cloud computing provides services to users through Internet.This open mode not only facilitates the access by users,but also brings potential security risks.In cloud computing,the risk of data leakage exists between users and virtual machines.Whether direct or indirect data leakage,it can be regarded as illegal information flow.Methods,such as access control models can control the information flow,but not the covert information flow.Therefore,it needs to use the noninterference models to detect the existence of illegal information flow in cloud computing architecture.Typical noninterference models are not suitable to certificate information flow in cloud computing architecture.In this paper,we propose several information flow models for cloud architecture.One model is for transitive cloud computing architecture.The others are for intransitive cloud computing architecture.When concurrent access actions execute in the cloud architecture,we want that security domain and security domain do not affect each other,that there is no information flow between security domains.But in fact,there will be more or less indirect information flow between security domains.Our models are concerned with how much information is allowed to flow.For example,in the CIP model,the other domain can learn the sequence of actions.But in the CTA model,the other domain can’t learn the information.Which security model will be used in an architecture depends on the security requirements for that architecture.展开更多
Cloud computing is a set of Information Technology services offered to users over the web on a rented base. Such services enable the organizations to scale-up or scale-down their in-house foundations. Generally, cloud...Cloud computing is a set of Information Technology services offered to users over the web on a rented base. Such services enable the organizations to scale-up or scale-down their in-house foundations. Generally, cloud services are provided by a third-party supplier who possesses the arrangement. Cloud computing has many advantages such as flexibility, efficiency, scalability, integration, and capital reduction. Moreover, it provides an advanced virtual space for organizations to deploy their applications or run their operations. With disregard to the possible benefits of cloud computing services, the organizations are reluctant to invest in cloud computing mainly due to security concerns. Security is one of the main challenges that hinder the growth of cloud computing. At the same time, service providers strive to reduce the risks over the clouds and increase their reliability in order to build mutual trust between them and the cloud customers. Various security issues and challenges are discussed in this research, and possible opportunities are stated.展开更多
The data and applications in cloud computing reside in cyberspace, that allowing to users access data through any connection device, when you need to transfer information over the cloud, you will lose control of it. T...The data and applications in cloud computing reside in cyberspace, that allowing to users access data through any connection device, when you need to transfer information over the cloud, you will lose control of it. There are multi types of security challenge must be understood and countermeasures. One of the major security challenges is resources of the cloud computing infrastructures are provided as services over the Internet, and entire data in the cloud computing are reside over network resources, that enables the data to be access through VMs. In this work, we describe security techniques for securing a VCCI, VMMs such as Encryption and Key Management (EKM), Access Control Mechanisms (ACMs), Virtual Trusted Platform Module (vTPM), Virtual Firewall (VF), and Trusted Virtual Domains (TVDs). In this paper we focus on security of virtual resources in Virtualized Cloud Computing Infrastructure (VCCI), Virtual Machine Monitor (VMM) by describing types of attacks on VCCI, and vulnerabilities of VMMs and we describe the techniques for securing a VCCI.展开更多
The resilient storage outsourcing schemes in mobile cloud computing are analyzed. It is pointed out that the sharing-based scheme (ShS) has vulnerabilities regarding confidentiality and integrity; meanwhile, the cod...The resilient storage outsourcing schemes in mobile cloud computing are analyzed. It is pointed out that the sharing-based scheme (ShS) has vulnerabilities regarding confidentiality and integrity; meanwhile, the coding-based scheme (COS) and the encryption-based scheme (EnS) have vulnerabilities on integrity. The corresponding attacks on these vulnerabilities are given. Then, the improved protocols such as the secure sharing-based protocol (SShP), the secure coding-based protocol (SCoP) and the secure encryption- based protocol (SEnP), are proposed to overcome these vulnerabilities. The core elements are protected through public key encryptions and digital signatures. Security analyses show that the confidentiality and the integrity of the improved protocols are guaranteed. Meanwhile, the improved protocols can keep the frame of the former schemes and have higher security. The simulation results illustrate that compared with the existing protocols, the communication overhead of the improved protocols is not significantly increased.展开更多
With the development of the Internet of Things,the edge devices are increasing.Cyber security issues in edge computing have also emerged and caused great concern.We propose a defense strategy based on Mean field game ...With the development of the Internet of Things,the edge devices are increasing.Cyber security issues in edge computing have also emerged and caused great concern.We propose a defense strategy based on Mean field game to solve the security issues of edge user data during edge computing.Firstly,an individual cost function is formulated to build an edge user data security defense model.Secondly,we research the𝜀𝜀-Nash equilibrium of the individual cost function with finite players and prove the existence of the optimal defense strategy.Finally,by analyzing the stability of edge user data loss,it proves that the proposed defense strategy is effective.展开更多
Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum servic...Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum service, and a critical aspect to this is cloud security which is one among other specific challenges hindering adoption of the cloud technologies. The absence of appropriate, standardised and self-assessing security frameworks of the cloud world for SMEs becomes an endless problem in developing countries and can expose the cloud computing model to major security risks which threaten its potential success within the country. This research presents a security framework for assessing security in the cloud environment based on the Goal Question Metrics methodology. The developed framework produces a security index that describes the security level accomplished by an evaluated cloud computing environment thereby providing the first line of defence. This research has concluded with an eight-step framework that could be employed by SMEs to assess the information security in the cloud. The most important feature of the developed security framework is to devise a mechanism through which SMEs can have a path of improvement along with understanding of the current security level and defining desired state in terms of security metric value.展开更多
文摘Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)(Project Nos.RS-2024-00438551,30%,2022-11220701,30%,2021-0-01816,30%)the National Research Foundation of Korea(NRF)grant funded by the Korean Government(Project No.RS2023-00208460,10%).
文摘The proliferation of Internet of Things(IoT)devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing.Nevertheless,the distributed nature of edge computing presents substantial security challenges,rendering it a prominent target for sophisticated malware attacks.Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources.This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation(GENOME)framework,a novel solution that is intended to improve the performance of malware detection and classification in peripheral computing environments.GENOME optimizes data storage and computa-tional efficiency by converting malware artifacts into compact,structured sequences through a Deoxyribonucleic Acid(DNA)encoding mechanism.The framework employs two DNA encoding algorithms,standard and compressed,which substantially reduce data size while preserving high detection accuracy.The Edge-IIoTset dataset was used to conduct experiments that showed that GENOME was able to achieve high classification performance using models such as Random Forest and Logistic Regression,resulting in a reduction of data size by up to 42%.Further evaluations with the CIC-IoT-23 dataset and Deep Learning models confirmed GENOME’s scalability and adaptability across diverse datasets and algorithms.The potential of GENOME to address critical challenges,such as the rapid mutation of malware,real-time processing demands,and resource limitations,is emphasized in this study.GENOME offers comprehensive protection for peripheral computing environments by offering a security solution that is both efficient and scalable.
基金The Natural Science Foundation of Henan Province(No.232300421097)the Program for Science&Technology Innovation Talents in Universities of Henan Province(No.23HASTIT019,24HASTIT038)+2 种基金the China Postdoctoral Science Foundation(No.2023T160596,2023M733251)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)the Song Shan Laboratory Foundation(No.YYJC022022003)。
文摘In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes.
文摘Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency.
基金supported in part by National Natural Science Foundation of China (NSFC) under Grant U1509219 and 2017YFB0802900
文摘A Service Level Agreement(SLA) is a legal contract between any two parties to ensure an adequate Quality of Service(Qo S). Most research on SLAs has concentrated on protecting the user data through encryption. However, these methods can not supervise a cloud service provider(CSP) directly. In order to address this problem, we propose a privacy-based SLA violation detection model for cloud computing based on Markov decision process theory. This model can recognize and regulate CSP's actions based on specific requirements of various users. Additionally, the model could make effective evaluation to the credibility of CSP, and can monitor events that user privacy is violated. Experiments and analysis indicate that the violation detection model can achieve good results in both the algorithm's convergence and prediction effect.
基金Supported by the National High-TechnologyResearch and Development Programof China (2002AA1Z2101)
文摘Networks are composed with servers and rather larger amounts of terminals and most menace of attack and virus come from terminals. Eliminating malicious code and ac cess or breaking the conditions only under witch attack or virus can be invoked in those terminals would be the most effec tive way to protect information systems. The concept of trusted computing was first introduced into terminal virus immunity. Then a model of security domain mechanism based on trusted computing to protect computers from proposed from abstracting the general information systems. The principle of attack resistant and venture limitation of the model was demonstrated by means of mathematical analysis, and the realization of the model was proposed.
基金supported by National Information Security Program under Grant No.2009A112
文摘Security is a key problem for the development of Cloud Computing. A common service security architecture is a basic abstract to support security research work. The authorization ability in the service security faces more complex and variable users and environment. Based on the multidimensional views, the service security architecture is described on three dimensions of service security requirement integrating security attributes and service layers. An attribute-based dynamic access control model is presented to detail the relationships among subjects, objects, roles, attributes, context and extra factors further. The model uses dynamic control policies to support the multiple roles and flexible authority. At last, access control and policies execution mechanism were studied as the implementation suggestion.
基金supported by the National Science Foundation Project of P. R. China (No. 61501026,61572072)Fundamental Research Funds for the Central Universities (No. FRF-TP-15-032A1)
文摘Fog computing is a new paradigm providing network services such as computing, storage between the end users and cloud. The distributed and open structure are the characteristics of fog computing, which make it vulnerable and very weak to security threats. In this article, the interaction between vulnerable nodes and malicious nodes in the fog computing is investigated as a non-cooperative differential game. The complex decision making process is reviewed and analyzed. To solve the game, a fictitious play-based algorithm is which the vulnerable node and the malicious nodes reach a feedback Nash equilibrium. We attain optimal strategy of energy consumption with Qo S guarantee for the system, which are conveniently operated and suitable for fog nodes. The system simulation identifies the propagation of malicious nodes. We also determine the effects of various parameters on the optimal strategy. The simulation results support a theoretical foundation to limit malicious nodes in fog computing, which can help fog service providers make the optimal dynamic strategies when different types of nodes dynamically change their strategies.
基金This research has been supported by the National Science Foundation(under grant#1723596)the National Security Agency(under grant#H98230-17-1-0355).
文摘Pervasive IoT applications enable us to perceive,analyze,control,and optimize the traditional physical systems.Recently,security breaches in many IoT applications have indicated that IoT applications may put the physical systems at risk.Severe resource constraints and insufficient security design are two major causes of many security problems in IoT applications.As an extension of the cloud,the emerging edge computing with rich resources provides us a new venue to design and deploy novel security solutions for IoT applications.Although there are some research efforts in this area,edge-based security designs for IoT applications are still in its infancy.This paper aims to present a comprehensive survey of existing IoT security solutions at the edge layer as well as to inspire more edge-based IoT security designs.We first present an edge-centric IoT architecture.Then,we extensively review the edge-based IoT security research efforts in the context of security architecture designs,firewalls,intrusion detection systems,authentication and authorization protocols,and privacy-preserving mechanisms.Finally,we propose our insight into future research directions and open research issues.
基金Supported by the National Natural Science Foun-dation of China (60373087 ,60473023 and 90104005)HP Labo-ratories of China
文摘Current delegation mechanism of grid security infrastructure (GSI) can't satisfy the requirement of dynamic, distributed and practical security in grid virtual organization. To improve this situation, a TC-enabled GSI is discussed in this paper. With TC-enabled GSI, a practical delegation solution is proposed in this paper through enforcing fine granularity policy over distributed platforms with the emerging trusted computing technologies. Here trusted platform module is treated as a tamper-resistance module to improve grid security infrastructure. With the implement of Project Daonity, it is demonstrated that the solution could gain dynamic and distributed security in grid environment.
基金Supported by the National Basic Research Programof China (G1999035801)
文摘A security kernel architeclrne built on trusted computing platform in thelight of thinking about trusted computing is presented According to this architecture, a newsecurity module TCB (Trusted Computing Base) is added to the operation system kerneland twooperation interface modes are provided for the sake of self-protection. The security kernel isdivided into two parts and trusted mechanism Is separated from security functionality. Ihe TCBmodule implements the trusted mechanism such as measurement and attestation, while the othercomponents of security kernel provide security functionality based on these mechanisms. Thisarchitecture takes full advantage of functions provided by trusted platform and clearly defines thesecurity perimeter of TCB so as to assure stlf-securily from architcetmal vision. We also presentfunction description of TCB and discuss the strengths and limitations comparing with other relatedresearches.
基金This work was supported by National Natural Science Foundation of China(No.61971026)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘In this paper,the security problem for the multi-access edge computing(MEC)network is researched,and an intelligent immunity-based security defense system is proposed to identify the unauthorized mobile users and to protect the security of whole system.In the proposed security defense system,the security is protected by the intelligent immunity through three functions,identification function,learning function,and regulation function,respectively.Meanwhile,a three process-based intelligent algorithm is proposed for the intelligent immunity system.Numerical simulations are given to prove the effeteness of the proposed approach.
基金National Natural Science Foundation of China under Grant No. 60970115,National Natural Science Funds Projects of China under Grant No. 91018008
文摘With the rapid development of wireless networks,the Ad Hoc networks are widely used in many fields,but the current network security solutions for the Ad Hoc network are not competitive enough.So the critical technology of Ad Hoc network applications shall be how to implement the security scheme.Here the discussions are focused on the specific solution against the security threats which the Ad Hoc networks will face,the methodology of a management model which uses trusted computing technology to solve Ad Hoc network security problems,and the analysis and verification for the security of this model.
文摘Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industry adoption and migration of traditional computing services to the cloud,one of the main challenges in cybersecurity is to provide mechanisms to secure these technologies.This work proposes a Data Security Framework for cloud computing services(CCS)that evaluates and improves CCS data security from a software engineering perspective by evaluating the levels of security within the cloud computing paradigm using engineering methods and techniques applied to CCS.This framework is developed by means of a methodology based on a heuristic theory that incorporates knowledge generated by existing works as well as the experience of their implementation.The paper presents the design details of the framework,which consists of three stages:identification of data security requirements,management of data security risks and evaluation of data security performance in CCS.
基金Natural Science Research Project of Jiangsu Province Universities and Colleges(No.17KJD520005,Congdong Lv).
文摘Cloud computing provides services to users through Internet.This open mode not only facilitates the access by users,but also brings potential security risks.In cloud computing,the risk of data leakage exists between users and virtual machines.Whether direct or indirect data leakage,it can be regarded as illegal information flow.Methods,such as access control models can control the information flow,but not the covert information flow.Therefore,it needs to use the noninterference models to detect the existence of illegal information flow in cloud computing architecture.Typical noninterference models are not suitable to certificate information flow in cloud computing architecture.In this paper,we propose several information flow models for cloud architecture.One model is for transitive cloud computing architecture.The others are for intransitive cloud computing architecture.When concurrent access actions execute in the cloud architecture,we want that security domain and security domain do not affect each other,that there is no information flow between security domains.But in fact,there will be more or less indirect information flow between security domains.Our models are concerned with how much information is allowed to flow.For example,in the CIP model,the other domain can learn the sequence of actions.But in the CTA model,the other domain can’t learn the information.Which security model will be used in an architecture depends on the security requirements for that architecture.
文摘Cloud computing is a set of Information Technology services offered to users over the web on a rented base. Such services enable the organizations to scale-up or scale-down their in-house foundations. Generally, cloud services are provided by a third-party supplier who possesses the arrangement. Cloud computing has many advantages such as flexibility, efficiency, scalability, integration, and capital reduction. Moreover, it provides an advanced virtual space for organizations to deploy their applications or run their operations. With disregard to the possible benefits of cloud computing services, the organizations are reluctant to invest in cloud computing mainly due to security concerns. Security is one of the main challenges that hinder the growth of cloud computing. At the same time, service providers strive to reduce the risks over the clouds and increase their reliability in order to build mutual trust between them and the cloud customers. Various security issues and challenges are discussed in this research, and possible opportunities are stated.
文摘The data and applications in cloud computing reside in cyberspace, that allowing to users access data through any connection device, when you need to transfer information over the cloud, you will lose control of it. There are multi types of security challenge must be understood and countermeasures. One of the major security challenges is resources of the cloud computing infrastructures are provided as services over the Internet, and entire data in the cloud computing are reside over network resources, that enables the data to be access through VMs. In this work, we describe security techniques for securing a VCCI, VMMs such as Encryption and Key Management (EKM), Access Control Mechanisms (ACMs), Virtual Trusted Platform Module (vTPM), Virtual Firewall (VF), and Trusted Virtual Domains (TVDs). In this paper we focus on security of virtual resources in Virtualized Cloud Computing Infrastructure (VCCI), Virtual Machine Monitor (VMM) by describing types of attacks on VCCI, and vulnerabilities of VMMs and we describe the techniques for securing a VCCI.
基金The National Natural Science Foundation of China( No. 60902008)the Key Laboratory Hi-Tech Program of Changzhou City( No. CM20103003)+1 种基金the Key Laboratory Program of Information Network Security of Ministry of Public Security (No. C12602)the Science and Technology Supporting Project of Changzhou City ( No. CE20120030)
文摘The resilient storage outsourcing schemes in mobile cloud computing are analyzed. It is pointed out that the sharing-based scheme (ShS) has vulnerabilities regarding confidentiality and integrity; meanwhile, the coding-based scheme (COS) and the encryption-based scheme (EnS) have vulnerabilities on integrity. The corresponding attacks on these vulnerabilities are given. Then, the improved protocols such as the secure sharing-based protocol (SShP), the secure coding-based protocol (SCoP) and the secure encryption- based protocol (SEnP), are proposed to overcome these vulnerabilities. The core elements are protected through public key encryptions and digital signatures. Security analyses show that the confidentiality and the integrity of the improved protocols are guaranteed. Meanwhile, the improved protocols can keep the frame of the former schemes and have higher security. The simulation results illustrate that compared with the existing protocols, the communication overhead of the improved protocols is not significantly increased.
文摘With the development of the Internet of Things,the edge devices are increasing.Cyber security issues in edge computing have also emerged and caused great concern.We propose a defense strategy based on Mean field game to solve the security issues of edge user data during edge computing.Firstly,an individual cost function is formulated to build an edge user data security defense model.Secondly,we research the𝜀𝜀-Nash equilibrium of the individual cost function with finite players and prove the existence of the optimal defense strategy.Finally,by analyzing the stability of edge user data loss,it proves that the proposed defense strategy is effective.
文摘Cloud computing plays a very important role in the development of business and competitive edge for many organisations including SMEs (Small and Medium Enterprises). Every cloud user continues to expect maximum service, and a critical aspect to this is cloud security which is one among other specific challenges hindering adoption of the cloud technologies. The absence of appropriate, standardised and self-assessing security frameworks of the cloud world for SMEs becomes an endless problem in developing countries and can expose the cloud computing model to major security risks which threaten its potential success within the country. This research presents a security framework for assessing security in the cloud environment based on the Goal Question Metrics methodology. The developed framework produces a security index that describes the security level accomplished by an evaluated cloud computing environment thereby providing the first line of defence. This research has concluded with an eight-step framework that could be employed by SMEs to assess the information security in the cloud. The most important feature of the developed security framework is to devise a mechanism through which SMEs can have a path of improvement along with understanding of the current security level and defining desired state in terms of security metric value.