期刊文献+
共找到816篇文章
< 1 2 41 >
每页显示 20 50 100
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
1
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal MULTI-SENSOR data level fusion correlation function weighted value
在线阅读 下载PDF
Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion 被引量:2
2
作者 Wen-juan Wu Chun-juan Jiang +2 位作者 Zhui-yang Zhang Kai Xu Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1124-1130,共7页
Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety ... Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety of biological effects.Cerebral ischemia and reperfusion can activate STATs signaling pathway,but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging(DWI)in rats after cerebral ischemia/reperfusion.Here,we established a rat model of focal cerebral ischemia injury using the modified Longa method.DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient.STAT3 protein expression showed no significant change after reperfusion,but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours.Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area.These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion. 展开更多
关键词 nerve regeneration cerebral ischemia/repe(fusion magnetic resonance imaging diffusion weighted imaging signal transducer and activator of transcription 3 phosphorylated signal transducer and activator of transcription 3 apparent diffusion coefficient relative apparentdiffusion coefficient IMMUNOHISTOCHEMISTRY western blot assay neural regeneration
在线阅读 下载PDF
Optimal multi-sensor Kalman smoothing fusion for discrete multichannel ARMA signals 被引量:1
3
作者 Shuli SUN 《控制理论与应用(英文版)》 EI 2005年第2期168-172,共5页
Based on the multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, using white noise estimators, an optimal fusion distributed Kalman smoother is given for discre... Based on the multi-sensor optimal information fusion criterion weighted by matrices in the linear minimum variance sense, using white noise estimators, an optimal fusion distributed Kalman smoother is given for discrete multi-channel ARMA (autoregressive moving average) signals. The smoothing error cross-covanance matrices between any two sensors are given for measurement noises. Furthermore, the fusion smoother gives higher precision than any local smoother does. 展开更多
关键词 Information fusion Distributed smoother Multichannel ARMA signal CROSS-COVARIANCE
在线阅读 下载PDF
HIGH RESOLUTION RANGE PROFILE FORMATION BASED ON LFM SIGNAL FUSION OF MULTIPLE RADARS 被引量:2
4
作者 Wang Cheng Hu Weidong Du Xiaoyong Yu Wenxian 《Journal of Electronics(China)》 2007年第1期75-82,共8页
This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multipl... This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile. 展开更多
关键词 Linear Frequency Modulation (LFM) Inverse Synthetic Aperture Radar (ISAR) signal fusion High Resolution Range (HRR) profile
在线阅读 下载PDF
DISTRIBUTED CFAR SIGNAL DETECTION BASED ON AREA FUSION
5
作者 Cui Ningzhou Xie Weixin Yu Xiongnan (Dept. of Electronic Engineering, Xidian University, Xi’an 710071) 《Journal of Electronics(China)》 1997年第1期7-11,共5页
The multisensor detection area partitioning is considered. An approach is presented to the fusion in each detection area where the sensor uses different thresholds and then at system level. The expressions of the dete... The multisensor detection area partitioning is considered. An approach is presented to the fusion in each detection area where the sensor uses different thresholds and then at system level. The expressions of the detection probability and false alarm probability are given. An application of the method is illustrated to distributed CFAR detection systems. The result shows that the system detection probability may be improved by setting different thresholds for a detector. 展开更多
关键词 MULTISENSOR signal detection DATA fusion
在线阅读 下载PDF
Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion
6
作者 Dan Zhang Yu Zhang Yiwen Liang 《Computers, Materials & Continua》 SCIE EI 2023年第8期2317-2336,共20页
The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of c... The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA.The loss function of DCA is ambiguous due to its complexity.To reduce the uncertainty,several researchers simplified the algorithm program;some introduced gradient descent to optimize parameters;some utilized searching methods to find the optimal parameter combination.However,these studies are either time-consuming or need to be revised in the case of non-convex functions.To overcome the problems,this study models the parameter optimization into a black-box optimization problem without knowing the information about its loss function.This study hybridizes bayesian optimization hyperband(BOHB)with DCA to propose a novel DCA version,BHDCA,for accomplishing parameter optimization in the signal fusion process.The BHDCA utilizes the bayesian optimization(BO)of BOHB to find promising parameter configurations and applies the hyperband of BOHB to allocate the suitable budget for each potential configuration.The experimental results show that the proposed algorithm has significant advantages over the otherDCAexpansion algorithms in terms of signal fusion. 展开更多
关键词 Dendritic cell algorithm signal fusion parameter optimization bayesian optimization hyperband
在线阅读 下载PDF
Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
7
作者 Jun-Yao Wang Yue-Hong Dai Xia-Xi Si 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear... To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced. 展开更多
关键词 Complex vector method electromyography(EMG)signal empirical mode decomposition feature layer fusion series splicing method
在线阅读 下载PDF
An Improved SCMA Detector Based on ResNet Perception Fusion
8
作者 Jin Libiao Feng Yuwei +2 位作者 Li Shufeng Sun Yao Yin Fangfang 《China Communications》 SCIE CSCD 2024年第12期152-165,共14页
The received signals used for sparse code multiple access(SCMA)detection are usually contaminated with noise during transmission,which exposes an issue of low decoding efficiency.To address this issue,a novel detector... The received signals used for sparse code multiple access(SCMA)detection are usually contaminated with noise during transmission,which exposes an issue of low decoding efficiency.To address this issue,a novel detector based on a residual network(ResNet)perception fusion framework(RSMPA)is proposed for uplink SCMA system in this paper.Specifically,we first formulate a joint design of perception system and traditional communication module.A perception framework based on ResNet is applied to cancel the noise component and enhance the communication system performance.The ResNet model is designed and trained using the clean and noisy SCMA signal,respectively.Based on the denoised output,information iteration process is executed for multi-user detection.Simulation results indicate that the perception model achieves an excellent denoising performance for SCMA system and the proposed scheme outperforms the conventional detection algorithms in terms of SER performance. 展开更多
关键词 perception fusion ResNet SCMA signal detection
在线阅读 下载PDF
Fault diagnosis method of AC motor rolling bearing based on heterogeneous data fusion of current and infrared image
9
作者 LIU Peijin GUO Zichen +2 位作者 HE Lin YAN Dongyang ZHANG Xiangrui 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期558-570,共13页
In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data... In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data fusion of current and infrared images.Firstly,VMD was used to decompose the motor current signal and extract the low-frequency component of the bearing fault signal.On this basis,the current signal was transformed into a two-dimensional graph suitable for convolutional neural network,and the data set was classified by convolutional neural network and softmax classifier.Secondly,the infrared image was segmented and the fault features were extracted,so as to calculate the similarity with the infrared image of the fault bearing in the library,and further the sigmod classifier was used to classify the data.Finally,a decision-level fusion method was introduced to fuse the current signal with the infrared image signal diagnosis result according to the weight,and the motor bearing fault diagnosis result was obtained.Through experimental verification,the proposed fault diagnosis method could be used for the fault diagnosis of motor bearing outer ring under the condition of load variation,and the accuracy of fault diagnosis can reach 98.85%. 展开更多
关键词 current signal infrared image decision level fusion rolling bearing fault diagnosis
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
10
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
考虑车道剩余容量的区域交通信号控制方法
11
作者 代亮 黄自彬 +1 位作者 张中昊 李臣富 《交通运输系统工程与信息》 北大核心 2025年第2期108-118,共11页
平面交叉口是城市路网整体通行能力的瓶颈,是城市路网交通组织、交通渠化和交通治理的重点。深度强化学习通过智能体与环境交互寻找目标策略,契合交通环境复杂多变的特点,被广泛应用于平面交叉口交通信号控制领域。本文提出考虑车道容... 平面交叉口是城市路网整体通行能力的瓶颈,是城市路网交通组织、交通渠化和交通治理的重点。深度强化学习通过智能体与环境交互寻找目标策略,契合交通环境复杂多变的特点,被广泛应用于平面交叉口交通信号控制领域。本文提出考虑车道容量的区域交通信号协同控制方法,通过建模上下游交叉口协作关系,在最大压力方法中引入交叉口下游车道容量信息设计奖励函数,同时,基于多智能体强化学习算法提出分布式区域交通信号协调控制方法。通过使用济南与杭州真实路网和交通流数据集进行性能验证,与现有区域交通信号控制方法相比,平均行程时间降低6.05%,平均延误降低18.39%,平均排队长度降低21.86%,吞吐量提升0.24%。 展开更多
关键词 智能交通 交通信号控制 深度强化学习 多智能体 特征融合
在线阅读 下载PDF
基于局部顺序统计量的分布式多脉冲检测
12
作者 窦法兵 张曼 +2 位作者 周生华 孙伟 邵文佳 《海军航空大学学报》 2025年第2期285-291,302,共8页
目标融合检测问题是分布式雷达的研究热点。传统的基于单元平均恒虚警率(Cell-Averaging Constant False Alarm Rate,CA-CFAR)的融合检测算法在非均匀背景下面临探测性能损失的问题。为了解决这一问题,针对分布式多脉冲(Distributed Mul... 目标融合检测问题是分布式雷达的研究热点。传统的基于单元平均恒虚警率(Cell-Averaging Constant False Alarm Rate,CA-CFAR)的融合检测算法在非均匀背景下面临探测性能损失的问题。为了解决这一问题,针对分布式多脉冲(Distributed Multi-Pulse,DM)雷达,提出了一种基于顺序统计量恒虚警率(Ordered-Statistics Constant False Alarm Rate,OS-CFAR)的融合检测算法(DMOS-CFAR):首先,在局部雷达的每个多普勒通道进行OS-CFAR并行处理;然后,将各距离单元不同多普勒通道上的统计量最大值传输至融合中心,并在融合中心实现给定虚警下的信号级融合检测。数值仿真表明:在多假目标干扰与杂波边缘场景下,DMOS-CFAR算法比分布式多脉冲CA-CFAR算法(DMCA-CFAR)检测性能更优;在均匀背景下,顺序值约为3n/4时,DMOS-CFAR算法检测性能最佳。 展开更多
关键词 顺序统计量 分布式多脉冲 融合检测 恒虚警率 信号级融合 分布式雷达 融合中心
在线阅读 下载PDF
多尺度迁移学习的轴承故障诊断
13
作者 尹洪申 刘文峰 +1 位作者 俞啸 丁恩杰 《机械设计与制造》 北大核心 2025年第1期10-14,共5页
针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成... 针对实际采煤机轴承故障诊断中存在变工况特征提取困难,故障训练样本不足等问题,结合当今流行的迁移学习的方法,提出了一种多尺度迁移学习的轴承诊断方法。首先通过经验模式分解(Empirical Mode Decomposition,EMD)从振动信号中分解成不同频率的本征模态函数(Intrinsic Mode Function,IMF);其次将得到的不同频率的IMF与卷积神经网络中不同尺寸卷积核提取到的丰富特征互补构建多尺度特征融合;采用联合最大平均差异(Joint Maximum Mean Discrep⁃ancy,JMMD)特征迁移的方法使源域与目标域联合分布差异最小化,然后通过多尺度融合模型进行分类识别;最后在凯斯西储大学轴承数据集和江南大学数据集对该方法进行了验证。实验结果证明该模型在两种不同工况和型号的轴承数据集中均取得较高的准确率,表现出模型良好的泛化能力。 展开更多
关键词 振动信号 故障诊断 多尺度特征融合 迁移学习 联合最大平均差异 特征迁移
在线阅读 下载PDF
高精度伺服倾角传感器信号处理方法研究
14
作者 户福标 付宇 +2 位作者 赵艺凡 罗建龙 赵辉 《传感器与微系统》 北大核心 2025年第3期37-41,45,共6页
高精度伺服倾角传感器输出的模拟信号存在波动幅度大且易受自身噪声及环境噪声干扰的问题。为提高测量精度和稳定性,设计了一种改进的卡尔曼滤波融合算法,依据算法原理和测量数据的统计特性,在滤波器设计中,对关键参数的取值进行了合理... 高精度伺服倾角传感器输出的模拟信号存在波动幅度大且易受自身噪声及环境噪声干扰的问题。为提高测量精度和稳定性,设计了一种改进的卡尔曼滤波融合算法,依据算法原理和测量数据的统计特性,在滤波器设计中,对关键参数的取值进行了合理设置,并对比分析了不同取值下的滤波效果。滤波结果表明:该算法能够显著提升滤波效果,较好地保持滤波后信号与原始信号的同步性,从而有效降低滤波延迟,能够满足对高精度伺服倾角传感器信号处理的需求。 展开更多
关键词 伺服倾角传感器 卡尔曼滤波 融合算法 信号处理
在线阅读 下载PDF
基于毫米波雷达微动信号和脉搏波数据融合的睡眠呼吸暂停低通气综合征筛查技术
15
作者 赵翔 王威 +2 位作者 李晨洋 关建 李刚 《雷达学报(中英文)》 北大核心 2025年第1期102-116,共15页
睡眠呼吸暂停低通气综合征(SAHS)是一种常见的慢性睡眠呼吸障碍疾病,严重影响患者的睡眠质量和身体健康。该文提出了一种基于多源信号融合的睡眠呼吸暂停与低通气检测框架,通过融合毫米波雷达微动信号与光电容积脉搏波(PPG)描记法的脉... 睡眠呼吸暂停低通气综合征(SAHS)是一种常见的慢性睡眠呼吸障碍疾病,严重影响患者的睡眠质量和身体健康。该文提出了一种基于多源信号融合的睡眠呼吸暂停与低通气检测框架,通过融合毫米波雷达微动信号与光电容积脉搏波(PPG)描记法的脉搏波数据,实现高可靠的轻接触式睡眠呼吸暂停低通气综合征的诊断,以解决传统医学上依赖多导睡眠图(PSG)进行睡眠监测时舒适度差、成本高等缺点。研究中,为兼顾睡眠呼吸异常事件检测的准确率和鲁棒性,该文提出了一种雷达、脉搏波数据预处理算法得到信号中的时频信息和人工特征,并设计了用于将两类信号融合的深度神经网络,以实现对睡眠呼吸暂停和低通气事件的精准识别,从而估算呼吸暂停低通气指数(AHI),用于对患者的睡眠呼吸异常严重程度进行定量评估。基于上海交通大学医学院附属第六人民医院临床试验数据集的实验结果表明,该文所提方案估算的AHI与金标准PSG的相关系数达到了0.93,一致性良好,有潜力普及成为家用睡眠呼吸监护的工具,并起到睡眠呼吸暂停低通气综合征初步筛查的作用。 展开更多
关键词 毫米波雷达 光电容积脉搏波 多源信号融合 深度神经网络 睡眠呼吸暂停低通气综合征 呼吸暂停低通气指数
在线阅读 下载PDF
基于多模态融合策略和注意力机制的睡眠自动分期模型
16
作者 陈丽娟 王磊 +2 位作者 沙宪政 常世杰 陈勇 《生物医学工程研究》 2025年第1期24-30,共7页
针对现有睡眠分期研究仅围绕单通道脑电(EEG)数据,无法有效利用睡眠状态转换规则的问题,本研究基于多模态融合策略与注意力机制,提出了一种自动睡眠分期模型。首先,构建表征学习模块捕捉多模态睡眠信号特征,挖掘特征通道间的关系;然后,... 针对现有睡眠分期研究仅围绕单通道脑电(EEG)数据,无法有效利用睡眠状态转换规则的问题,本研究基于多模态融合策略与注意力机制,提出了一种自动睡眠分期模型。首先,构建表征学习模块捕捉多模态睡眠信号特征,挖掘特征通道间的关系;然后,设计多通道融合策略加强对特征的校准学习,并融合多模态信号间的互补信息;最后,将融合后的特征输入上下文通道依赖学习模块,利用注意力机制学习睡眠信号的上下文关系,以获得精准的睡眠分期结果。结果表明,该模型在Sleep-EDF-20、Sleep-EDF-78和蒙特利尔睡眠研究档案(MASS)三个公共数据集上的准确率分别为85.9%、85.2%和88.5%,宏平均F1分数(MF1)分别为80.8%、80.0%和82.1%。本研究模型的准确率和鲁棒性优于其他模型,可为睡眠分期提供技术参考。 展开更多
关键词 睡眠分期 多模态信号 深度学习 特征融合 编码器 分类网络
在线阅读 下载PDF
基于Fusion的感应同步器的信号处理 被引量:2
17
作者 王先全 吴敏 +1 位作者 冯济琴 娄丽娜 《重庆工学院学报(自然科学版)》 2009年第8期100-103,共4页
通过鉴别感应同步器激磁信号和感应信号的相位差来检测感应同步器的转子相对定子的角度.采用Actel的Fusion集成的FPGA、A/D转换和CoreMP7的ARM7内核,实现正、余弦信号的产生、数据采集和数据处理的单芯片SOC系统,同时,在激磁信号0°... 通过鉴别感应同步器激磁信号和感应信号的相位差来检测感应同步器的转子相对定子的角度.采用Actel的Fusion集成的FPGA、A/D转换和CoreMP7的ARM7内核,实现正、余弦信号的产生、数据采集和数据处理的单芯片SOC系统,同时,在激磁信号0°相位时采集感应信号,通过FFT计算感应信号的初相位,进而实现感应同步器的位置检测. 展开更多
关键词 感应同步器 数据采集 FPGA 傅里叶变换 fusion
在线阅读 下载PDF
TSEncoder:基于SAVMD和多源数据融合的故障分类
18
作者 季龙炳 周宇 钱巨 《计算机系统应用》 2025年第1期223-235,共13页
针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取,以及设备单一位置信息无法全面反映运行状态的问题,本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法.首先,提出了一种改进的信号自适应分解算法S... 针对实际运行机械设备信号易受噪声干扰导致故障特征难以准确提取,以及设备单一位置信息无法全面反映运行状态的问题,本研究提出了一种改进的信号自适应分解与多源数据融合的时空故障分类方法.首先,提出了一种改进的信号自适应分解算法SAVMD(signal adaptive variational mode decomposition),并构建加权峭度稀疏度指标WKS(weighted kurtosis sparsity)筛选出富含特征信息的IMF(intrinsic mode function)分量,以实现信号重构.其次,将不同位置传感器的多源数据进行融合,并以周期性采样得到的数据集作为模型的输入.最后,构建了一个时空故障分类模型来处理多源数据,通过改进的稀疏自注意力机制降低噪声干扰,并利用双编码器机制实现对时间步长和空间通道信息的有效处理.在3个公开的机械设备故障数据集上进行实验,平均准确率分别达到了99.1%、98.5%和99.4%.与其他故障分类方法相比表现更好,具有良好的自适应性和鲁棒性,为机械设备的故障诊断提供了一种可行的方法. 展开更多
关键词 信号自适应分解 多源数据融合 时空故障分类模型 故障分类
在线阅读 下载PDF
基于卡尔曼融合的双通道微弱信号采集系统设计与实现
19
作者 卓光加 董彩萍 +1 位作者 郭拓 刘建国 《电子技术应用》 2025年第3期98-104,共7页
针对设备在水下磁异常信号检测中难以有效采集、模数转换器动态范围受限导致信噪比较低、微弱信号易被噪声淹没等问题,设计一种基于国产现场可编程门阵列(Field-Programmable Gate Array,FPGA)的高精度磁异常信号采集系统。为了提升信... 针对设备在水下磁异常信号检测中难以有效采集、模数转换器动态范围受限导致信噪比较低、微弱信号易被噪声淹没等问题,设计一种基于国产现场可编程门阵列(Field-Programmable Gate Array,FPGA)的高精度磁异常信号采集系统。为了提升信号的信噪比与动态范围,在分别采用2倍和8倍的增益前级处理后,通过高精度多通道模数转换芯片ADS1278与紫光Logos系列FPGA对三轴磁通门输出的微弱磁异常信号进行采集,并将采集的信号平均加权进行初步数据融合后使用卡尔曼滤波对融合数据进行二次修正。试验结果表明,融合后的信号精度明显优于单通道的采集信号,在使用双通道A/D采集频率为200 Hz、幅值为500μV的微弱信号时,信噪比提高26.099 dB,有效提高了数据采集系统的动态范围。 展开更多
关键词 信号采集系统 磁异常信号 双通道融合 动态范围 卡尔曼滤波
在线阅读 下载PDF
多特征融合的脑电警觉度估计方法
20
作者 朱逵 苗敏敏 +1 位作者 胡文军 王士同 《智能计算机与应用》 2025年第1期32-37,共6页
传统的脑电警觉度识别通常只提取时域、频域或非线性其中一种类型特征,导致警觉度估计的准确度不高,本文提出了多特征融合的脑电警觉度估计方法。首先,将脑电信号进行预处理,随后提取时域、频域和非线性等多种特征,进一步利用卡方检验... 传统的脑电警觉度识别通常只提取时域、频域或非线性其中一种类型特征,导致警觉度估计的准确度不高,本文提出了多特征融合的脑电警觉度估计方法。首先,将脑电信号进行预处理,随后提取时域、频域和非线性等多种特征,进一步利用卡方检验进行特征选择;其次,将选择后的特征分别输入不同分类器进行警觉度估计;最后,使用SEED-VIG数据集进行实验,对本文所提方法进行验证。实验结果表明,多特征融合的脑电警觉度估计方法具有较好的效果。 展开更多
关键词 脑电信号 警觉度 多特征融合 卡方检验
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部