期刊文献+
共找到1,089篇文章
< 1 2 55 >
每页显示 20 50 100
Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
1
作者 Yunchang Liu Fei Wan Chengwu Liang 《Computers, Materials & Continua》 SCIE EI 2024年第3期4343-4361,共19页
Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of... Traffic flow prediction plays a key role in the construction of intelligent transportation system.However,due to its complex spatio-temporal dependence and its uncertainty,the research becomes very challenging.Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes.However,due to the time-varying spatial correlation of the traffic network,there is no fixed node relationship,and these methods cannot effectively integrate the temporal and spatial features.This paper proposes a novel temporal-spatial dynamic graph convolutional network(TSADGCN).The dynamic time warping algorithm(DTW)is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension,and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow.By combining graph attention network and time attention network,a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data.Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms. 展开更多
关键词 Intelligent transportation graph convolutional network traffic flow DTW algorithm attention mechanism
在线阅读 下载PDF
Totally Coded Method for Signal Flow Graph Algorithm 被引量:2
2
作者 徐静波 周美华 《Journal of Donghua University(English Edition)》 EI CAS 2002年第2期63-68,共6页
After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algo... After a code-table has been established by means of node association information from signal flow graph, the totally coded method (TCM) is applied merely in the domain of code operation beyond any figure-earching algorithm. The code-series (CS) have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is simple and it is suited for computer programming. The capability of the computer-aided analysis for switched current network (SIN) can be enhanced. 展开更多
关键词 SIGNAL flow graph algorithm CODED method SIN.
在线阅读 下载PDF
RECONSTRUCTION OF ONE DIMENSIONAL MULTI-LAYERED MEDIA BY USING A TIME DOMAIN SIGNAL FLOW GRAPH TECHNIQUE 被引量:1
3
作者 崔铁军 梁昌洪 《Journal of Electronics(China)》 1993年第2期162-169,共8页
A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal f... A novel inverse scattering method to reconstruct the permittivity profile of one-dimensional multi-layered media is proposed in this paper.Based on the equivalent network ofthe medium,a concept of time domain signal flow graph and its basic principles are introduced,from which the reflection coefficient of the medium in time domain can be shown to be a series ofDirac δ-functions(pulse responses).In terms of the pulse responses,we will reconstruct both thepermittivity and the thickness of each layer will accurately be reconstructed.Numerical examplesverify the applicability of this 展开更多
关键词 Multi-layered MEDIUM Reconstruct PERMITTIVITY profile INVERSE SCATTERING Time DOMAIN signal flow graph
在线阅读 下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:2
4
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 Multi-step traffic flow prediction graph convolutional network External factors Attentional encoder network Spatiotemporal correlation
在线阅读 下载PDF
Analysis of Electronic Circuits with the Signal Flow Graph Method
5
作者 Feim Ridvan Rasim Sebastian M. Sattler 《Circuits and Systems》 2017年第11期261-274,共14页
In this work a method called “signal flow graph (SFG)” is presented. A signal-flow graph describes a system by its signal flow by directed and weighted graph;the signals are applied to nodes and functions on edges. ... In this work a method called “signal flow graph (SFG)” is presented. A signal-flow graph describes a system by its signal flow by directed and weighted graph;the signals are applied to nodes and functions on edges. The edges of the signal flow graph are small processing units, through which the incoming signals are processed in a certain form. In this case, the result is sent to the outgoing node. The SFG allows a good visual inspection into complex feedback problems. Furthermore such a presentation allows for a clear and unambiguous description of a generating system, for example, a netview. A Signal Flow Graph (SFG) allows a fast and practical network analysis based on a clear data presentation in graphic format of the mathematical linear equations of the circuit. During creation of a SFG the Direct Current-Case (DC-Case) was observed since the correct current and voltage directions was drawn from zero frequency. In addition, the mathematical axioms, which are based on field algebra, are declared. In this work we show you in addition: How we check our SFG whether it is a consistent system or not. A signal flow graph can be verified by generating the identity of the signal flow graph itself, illustrated by the inverse signal flow graph (SFG&minus;1). Two signal flow graphs are always generated from one circuit, so that the signal flow diagram already presented in previous sections corresponds to only half of the solution. The other half of the solution is the so-called identity, which represents the (SFG&minus;1). If these two graphs are superposed with one another, so called 1-edges are created at the node points. In Boolean algebra, these 1-edges are given the value 1, whereas this value can be identified with a zero in the field algebra. 展开更多
关键词 ANALOG FEEDBACK Network Theory SYMBOLIC ANALYSIS Signal flow graph TRANSFER Function
在线阅读 下载PDF
Development of an Improved GUI Automation Test System Based on Event-Flow Graph 被引量:2
6
作者 Yongzhong Lu Danping Yan +1 位作者 Songlin Nie Chun Wang 《Journal of Software Engineering and Applications》 2008年第1期38-43,共6页
A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GU... A more automated graphic user interface (GUI) test model, which is based on the event-flow graph, is proposed. In the model, a user interface automation API tool is first used to carry out reverse engineering for a GUI test sample so as to obtain the event-flow graph. Then two approaches are adopted to create GUI test sample cases. That is to say, an improved ant colony optimization (ACO) algorithm is employed to establish a sequence of testing cases in the course of the daily smoke test. The sequence goes through all object event points in the event-flow graph. On the other hand, the spanning tree obtained by deep breadth-first search (BFS) approach is utilized to obtain the testing cases from goal point to outset point in the course of the deep regression test. Finally, these cases are applied to test the new GUI. Moreover, according to the above-mentioned model, a corresponding prototype system based on Microsoft UI automation framework is developed, thus giving a more effective way to improve the GUI automation test in Windows OS. 展开更多
关键词 Automated Software TESTING graphIC User Interface Event-flow graph Regression TESTING ANT COLONY Optimization UI AUTOMATION
在线阅读 下载PDF
Cyclic Reconfigurable Flow Shop under Different Configurations Modeling and Optimization Based on Timed Event Graph
7
作者 REN Si-Cheng XU De WANG Fang TAN Min 《自动化学报》 EI CSCD 北大核心 2006年第1期15-20,共6页
Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind o... Based on the idea that modules are independent of machines, different combinations of modules and machines result in different configurations and the system performances differ under different configurations, a kind of cyclic reconfigurable flow shops are proposed for the new manufacturing paradigm-reconfigurable manufacturing system. The cyclic reconfigurable flow shop is modeled as a timed event graph. The optimal configuration is defined as the one under which the cyclic reconfigurable flow shop functions with the minimum cycle time and the minimum number of pallets. The optimal configuration, the minimum cycle time and the minimum number of pallets can be obtained in two steps. 展开更多
关键词 循环流程 制造业 时间事件 建模 优化设计
在线阅读 下载PDF
A STABILITY RESULT FOR TRANSLATINGSPACELIKE GRAPHS IN LORENTZ MANIFOLDS
8
作者 高雅 毛井 吴传喜 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期474-483,共10页
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece... In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation. 展开更多
关键词 mean curvature flow spacelike graphs translating spacelike graphs maximal spacelike graphs constant mean curvature Lorentz manifolds
在线阅读 下载PDF
Multi-scale persistent spatiotemporal transformer for long-term urban traffic flow prediction
9
作者 Jia-Jun Zhong Yong Ma +3 位作者 Xin-Zheng Niu Philippe Fournier-Viger Bing Wang Zu-kuan Wei 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期53-69,共17页
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial... Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel efficiency.To improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic data.In recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic data.However,most models ignore the semantic spatial similarity between long-distance areas when mining spatial dependency.They also ignore the impact of predicted time steps on the next unpredicted time step for making long-term predictions.Moreover,these models lack a comprehensive data embedding process to represent complex spatiotemporal dependency.This paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in cities.MSPSTT adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these issues.The model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic characteristics.The spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term prediction.Experiments on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics. 展开更多
关键词 graph neural network Multi-head attention mechanism Spatio-temporal dependency Traffic flow prediction
在线阅读 下载PDF
Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
10
作者 ZHANG Hong GONG Lei +2 位作者 ZHAO Tianxin ZHANG Xijun WANG Hongyan 《High Technology Letters》 EI CAS 2024年第4期370-379,共10页
Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial... Traffic flow forecasting plays a crucial role and is the key technology to realize dynamic traffic guidance and active traffic control in intelligent traffic systems(ITS).Aiming at the complex local and global spatial-temporal dynamic characteristics of traffic flow,this paper proposes a new traffic flow forecasting model spatial-temporal attention graph neural network(STA-GNN)by combining at-tention mechanism(AM)and spatial-temporal convolutional network.The model learns the hidden dynamic local spatial correlations of the traffic network by combining the dynamic adjacency matrix constructed by the graph learning layer with the graph convolutional network(GCN).The local tem-poral correlations of traffic flow at different scales are extracted by stacking multiple convolutional kernels in temporal convolutional network(TCN).And the global spatial-temporal dependencies of long-time sequences of traffic flow are captured by the spatial-temporal attention mechanism(STAtt),which enhances the global spatial-temporal modeling and the representational ability of model.The experimental results on two datasets,METR-LA and PEMS-BAY,show the proposed STA-GNN model outperforms the common baseline models in forecasting accuracy. 展开更多
关键词 traffic flow forecasting graph convolutional network(GCN) temporal convolu-tional network(TCN) attention mechanism(AM)
在线阅读 下载PDF
城市排水管网流量预测多视图时空图神经网络模型
11
作者 涂伟 池向沅 +3 位作者 赵天鸿 杨剑 朱世平 陈德莉 《测绘学报》 北大核心 2025年第2期334-344,共11页
城市排水管网的流量是其运行效率和安全的关键指标,准确的流量预测对排水管网运行风险预警、优化其运行效率及规划布局至关重要。水流量不仅受到其自身动力学特性的影响,还与管网的空间结构紧密相关,但传统水流量预测方法较少关注水流... 城市排水管网的流量是其运行效率和安全的关键指标,准确的流量预测对排水管网运行风险预警、优化其运行效率及规划布局至关重要。水流量不仅受到其自身动力学特性的影响,还与管网的空间结构紧密相关,但传统水流量预测方法较少关注水流在管道之间复杂多维的空间依赖关系。针对这一问题,本文提出了一种基于多视图的时空图网络模型,该模型综合考虑了排水管网的空间邻近性和节点间的属性相似性。分别构建最近邻拓扑视图与流量相似性属性视图,使用时空图卷积网络挖掘流量特征的内在时空依赖,利用注意力机制对多个视图的时空依赖特征进行融合以获得流量预测值。利用某市排水管网历史水流监测数据进行试验,结果表明本文提出的多视图时空图神经网络模型取得了较好的预测性能,多视图对比试验验证了不同视图在模型中起到的贡献。 展开更多
关键词 管网流量预测 多视图 时空图网络 图深度学习
在线阅读 下载PDF
“患贫”还是“患不均”?——收入水平、收入分化对劳动力流动网络的因果效应
12
作者 王群勇 孙倩 《人口与经济》 北大核心 2025年第2期85-103,共19页
以往文献更多关注收入水平对劳动力流动的影响,忽略了收入分化及其网络效应。基于2011—2017年中国流动人口动态监测调查数据,构建劳动力流动网络,运用时间指数随机图模型(TERGM)与反事实模拟研究了区域收入水平与区域收入分化对劳动力... 以往文献更多关注收入水平对劳动力流动的影响,忽略了收入分化及其网络效应。基于2011—2017年中国流动人口动态监测调查数据,构建劳动力流动网络,运用时间指数随机图模型(TERGM)与反事实模拟研究了区域收入水平与区域收入分化对劳动力流动网络的复杂影响。研究表明:劳动力患贫更患不均,劳动力流向高收入地区,同时从收入高分化地区流向相对平等的地区,收入分化对于劳动力流出的作用尤为显著,相比于提高地区收入水平,改善分化更有助于缓解流失。高技能和低技能劳动力存在异质性,高技能劳动力重视收入水平,倾向于流向高收入地区,对收入分化不敏感;而低技能劳动力不仅受收入水平影响,区域的收入分化水平对其具有更大的驱动作用。反事实模拟显示,若东北地区的基尼系数下降一个标准差,则劳动力流出减少约22万人,流入增加约6万人;当人均收入提高一个标准差,则劳动力流出减少约12万人,流入增加约4万人。人均收入对劳动力流动的影响更为复杂,如果没有基尼系数的改善,只有收入水平提高不一定改善劳动力流失的状况。结论揭示了收入与劳动力流动之间的复杂关系,为劳动力流动网络演化研究提供了新的视角,对于区域协调发展和人口高质量发展具有重要的政策借鉴意义。 展开更多
关键词 劳动力流动网络 收入效应 时间指数随机图模型 网络因果效应 反事实模拟
在线阅读 下载PDF
面向YOLO神经网络的数据流架构优化研究
13
作者 穆宇栋 李文明 +5 位作者 范志华 吴萌 吴海彬 安学军 叶笑春 范东睿 《计算机学报》 北大核心 2025年第1期82-99,共18页
YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行... YOLO目标检测算法具有速度快、精度高、结构简单、性能稳定等优点,因此在多种对实时性要求较高的场景中得到广泛应用。传统的控制流架构在执行YOLO神经网络时面临计算部件利用率低、功耗高、能效较低等挑战。相较而言,数据流架构的执行模式与神经网络算法匹配度高,更能充分挖掘其中的数据并行性。然而,在数据流架构上部署YOLO神经网络时面临三个问题:(1)数据流架构的数据流图映射并不能结合YOLO神经网络中卷积层卷积核较小的特点,造成卷积运算数据复用率过低的问题,并进一步降低计算部件利用率;(2)数据流架构在算子调度时无法利用算子间结构高度耦合的特点,导致大量数据重复读取;(3)数据流架构上的数据存取与执行高度耦合、串序执行,导致数据存取延迟过高。为解决这些问题,本文设计了面向YOLO神经网络的数据流加速器DFU-Y。首先,结合卷积嵌套循环的执行模式,本文分析了小卷积核卷积运算的数据复用特征,并提出了更有利于执行单元内部数据复用的数据流图映射算法,从而整体提升卷积运行效率;然后,为充分利用结构耦合的算子间的数据复用,DFU-Y提出数据流图层次上的算子融合调度机制以减少数据存取次数、提升神经网络运行效率;最后,DFU-Y通过双缓存解耦合数据存取与执行,从而并行执行数据存取与运算,掩盖了程序间的数据传输延迟,提高了计算部件利用率。实验表明,相较数据流架构(DFU)和GPU(NVIDIA Xavier NX),DFU-Y分别获得2.527倍、1.334倍的性能提升和2.658倍、3.464倍的能效提升;同时,相较YOLO专用加速器(Arria-YOLO),DFU-Y在保持较好通用性的同时,达到了其性能的72.97%、能效的87.41%。 展开更多
关键词 YOLO算法 数据流架构 数据流图优化 卷积神经网络 神经网络加速
在线阅读 下载PDF
基于分解动态时空分解框架预测交通流量
14
作者 蒋挺 杨柳 +2 位作者 刘亚林 张邵华 石硕 《科学技术与工程》 北大核心 2025年第7期3007-3017,共11页
近几年,时空图卷积网络(spatial-temporal graph convolutional network, STGCN)被引入交通流量预测中,具有良好的时空交通数据建模能力,取得了先进的性能,但是仍存在两个问题:(1)交通流量数据具有很强的时空相关性;(2)静态的预定义图... 近几年,时空图卷积网络(spatial-temporal graph convolutional network, STGCN)被引入交通流量预测中,具有良好的时空交通数据建模能力,取得了先进的性能,但是仍存在两个问题:(1)交通流量数据具有很强的时空相关性;(2)静态的预定义图难以捕获交通流随时间动态变化的时空依赖关系。为解决以上问题,提出了一种新的时空分解框架(spatial-temporal decomposed framework, STDF),它使用了残差连接、遗忘门、更新门,将时间模块和空间模块有机连接起来,以将输入信息进行多层次双维度的分解和预测。此外将STDF进行实例化,提出一种新的基于输入交通信号分解的动态时空融合的交通预测模型(decomposed dynamic spatial-temporal graph convolutional network, DDSTGCN),它捕捉了交通的时空相关性,并设计了一个动态图学习模块,考虑了空间依赖的动态性质。最后利用两个真实交通流量的数据(在PEMS04和PEMS08的数据集),与现有的交通流量预测算法进行对比。实验结果证明,所提方法在交通流量预测的准确率有良好的性能表现,能够有效地完成真实场景下的交通流量预测。 展开更多
关键词 交通流量预测 时空图卷积网络(STGCN) 时空相关性 时空融合 动态图学习
在线阅读 下载PDF
基于潮流嵌入和最小割池化的电网静态安全分析图学习模型
15
作者 马遵 李永哲 +4 位作者 何鑫 管霖 向川 陈勇 何伊慧 《南方电网技术》 北大核心 2025年第1期63-73,92,共12页
运用数据驱动模型实现快速的电网静态安全分析是新型电力系统分析中值得探索的研究方向。提高数据驱动模型对运行方式变化的泛化能力和对电网拓扑变化的适应能力是关键技术挑战之一。提出了一种基于潮流嵌入和最小割池化的电网静态安全... 运用数据驱动模型实现快速的电网静态安全分析是新型电力系统分析中值得探索的研究方向。提高数据驱动模型对运行方式变化的泛化能力和对电网拓扑变化的适应能力是关键技术挑战之一。提出了一种基于潮流嵌入和最小割池化的电网静态安全分析图学习模型。首先,通过以复原节点电压为导向的潮流状态嵌入模块,将电网N-1方式的拓扑差异转化为节点特征差异,改善了模型的泛化能力。其次,运用社团划分思想,采用最小割池化技术动态缩小了电网节点规模和节点特征维数,使模型具备对拓扑变化的适应能力。通过在IEEE 39节点系统和IEEE 118节点系统的验证测试和可视化分析,表明所设计的图深度学习模型准确率高,具有秒级的评估速度以及对电网规模变化的良好适应能力。 展开更多
关键词 静态安全分析 图深度学习 掩模图自编码器 潮流嵌入 图池化 拓扑变化适应性
在线阅读 下载PDF
基于二进制重写的混合分析构建控制流图方案
16
作者 李自友 黄晓芳 殷明勇 《计算机应用研究》 北大核心 2025年第2期555-559,共5页
控制流图(CFG)是二进制程序分析的基础。传统静态分析方法构建控制流图速度快,代码覆盖率高,但不能解决间接跳转问题;动态分析方法能够分析间接跳转,但代码覆盖率低、性能开销大。为更加高效构建完备的控制流图,提出静态动态结合的混合... 控制流图(CFG)是二进制程序分析的基础。传统静态分析方法构建控制流图速度快,代码覆盖率高,但不能解决间接跳转问题;动态分析方法能够分析间接跳转,但代码覆盖率低、性能开销大。为更加高效构建完备的控制流图,提出静态动态结合的混合分析方案。首先使用静态分析获取程序的初始控制流图,采用模糊测试的方法获取目标程序不同执行流的输入数据,诱导重写后的目标程序执行获取间接跳转地址;融合静态分析和动态分析结果,从而高效构建完备的控制流图。通过实验验证,该混合分析方案相比于现有的混合分析方案,能够构建更加完整的控制流图,相比于基于动态二进制插桩的混合分析方案效率更高。 展开更多
关键词 控制流图 二进制程序 混合分析 二进制重写
在线阅读 下载PDF
基于数据流图和混合网络模型的智能合约漏洞检测
17
作者 丁诗琪 陈正奎 黄海 《软件工程》 2025年第1期52-56,共5页
智能合约控制着区块链上巨额资产的流动,因此确保其安全性至关重要。基于此,提出一种基于数据流图和混合深度学习模型的方法,即DFG-HDP,用于检测智能合约的漏洞。该方法首先对智能合约源码进行清洗和变量规范;其次从源码中提取数据流特... 智能合约控制着区块链上巨额资产的流动,因此确保其安全性至关重要。基于此,提出一种基于数据流图和混合深度学习模型的方法,即DFG-HDP,用于检测智能合约的漏洞。该方法首先对智能合约源码进行清洗和变量规范;其次从源码中提取数据流特征,将其与源码结合作为输入;最后将不同的词嵌入模型与不同的深度学习模型结合,对输入进行学习检测。实验结果表明,该方法在智能合约漏洞检测中的F1值高达89.90%,优于之前的漏洞检测方法CBGRU。这一结果证明了该方法的有效性和优越性。 展开更多
关键词 智能合约 漏洞检测 数据流图 混合模型
在线阅读 下载PDF
基于图编码与改进流注意力的编码sORFs预测方法DeepsORF
18
作者 谢冬梅 边昕烨 +4 位作者 于连飞 刘文博 王子灵 曲志坚 于家峰 《计算机应用》 北大核心 2025年第2期546-555,共10页
小开放阅读框(sORFs)在多种生物学过程中发挥着关键作用,且准确识别编码sORFs和非编码sORFs是基因组学中一项重要且有挑战性的任务。针对目前大多数编码sORFs预测算法严重依赖基于先验生物知识的手工特征且缺乏通用性的问题以及原始sORF... 小开放阅读框(sORFs)在多种生物学过程中发挥着关键作用,且准确识别编码sORFs和非编码sORFs是基因组学中一项重要且有挑战性的任务。针对目前大多数编码sORFs预测算法严重依赖基于先验生物知识的手工特征且缺乏通用性的问题以及原始sORFs的序列长度长短不一而无法直接输入预测模型的问题,提出一种基于sORF-Graph图编码方式的端到端的深度学习框架DeepsORF预测编码sORFs。首先,通过sORF-Graph将所有sORFs序列编码成对应的图,并将序列信息编码成图元素特征,从而对输入序列进行标准化处理;其次,引入基于卷积与残差的流注意力机制捕获sORFs中碱基远距离之间的相互作用,以更有效地表达sORFs的特征,并提高模型的预测精度。实验结果证明,DeepsORF框架在6个独立测试集上的性能均得到提升,与csORF-finder方法相比,DeepsORF在D.melanogaster nonCDS-sORFs测试集上的准确率、马修斯相关系数(MCC)以及精确率分别提升了9.97、19.49与13.07个百分点,验证了DeepsORF模型在识别编码sORFs和非编码sORFs任务中的有效性以及良好泛化能力。 展开更多
关键词 小开放阅读框 编码sORFs 端到端 图编码 流注意力
在线阅读 下载PDF
THE APPLICATION OF THE BRANCH AND BOUND METHOD FOR DETERMINING THE MINIMUM FLOW OF A TRANSPORT NETWORK
19
作者 宁宣熙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第2期45+41-44,共5页
Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity throu... Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity through the network in the seriously blocked situation. It is an important parameter in designing and operating a transport network, especially in an emergency evacuation network. A branch and bound method is presented to solve the minimum flow problem on the basis of the blocking flow theory and the algorithm and its application are illustrated by examples. 展开更多
关键词 network flow graph theory network programming minimum flow blocking flow
在线阅读 下载PDF
基于动态时空图网络的交通流量预测模型
20
作者 何宇豪 郑皎凌 《微电子学与计算机》 2025年第1期55-64,共10页
传统的交通流量预测模型使用静态邻接矩阵进行时空建模,忽略了路网节点间潜在的空间依赖关系以及交通流量数据所呈现出的周期相似性。为此,提出一种基于多头注意力机制的动态时空图网络模型ADSTGN。首先,将交通流量数据处理成三通道周... 传统的交通流量预测模型使用静态邻接矩阵进行时空建模,忽略了路网节点间潜在的空间依赖关系以及交通流量数据所呈现出的周期相似性。为此,提出一种基于多头注意力机制的动态时空图网络模型ADSTGN。首先,将交通流量数据处理成三通道周期性时间序列,并对序列数据经过时间位置编码建模时间特征确保序列顺序性。其次,在空间维度方面提出一种动态图生成器模块。该模块利用相似性空间特征与距离特征表示静态路网结构信息,并结合自适应邻接矩阵实时捕捉路网节点之间隐藏的空间依赖。最后,在时间维度方面提出了对多头注意力机制运用一维卷积整合局部上下文的办法,充分捕获三通道周期数据下的时间相关性,并过滤历史冗余信息。在4个高速公路公开数据集(PEMS03、PEMS04、PEMS07和PEMS08)上进行了实验。结果表明:相比现有的基线模型,ADSTGN模型具有更优的性能指标。证明了该模型在交通流量预测中的有效性。 展开更多
关键词 交通流量预测 动态时空图网络 动态图生成器 注意力机制
在线阅读 下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部