Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
双基多输入单输出(multiple input single output,MISO)地波雷达采用岸基均匀线阵发射多载频线性调频中断连续波FMICW信号,单根全向天线接收回波信号。由于各发射阵元所用载频不同,目标回波中存在距离-方位耦合。耦合严重时,空时超分辨...双基多输入单输出(multiple input single output,MISO)地波雷达采用岸基均匀线阵发射多载频线性调频中断连续波FMICW信号,单根全向天线接收回波信号。由于各发射阵元所用载频不同,目标回波中存在距离-方位耦合。耦合严重时,空时超分辨算法将失效。借鉴比幅单脉冲测角思想,推导了该耦合关系,得到耦合系数以及影响该系数的因素,即阵元发射信号载频与阵元位置。利用遗传算法优化载频选择方案,从而对距离方位解耦以提高测距测角精度。仿真表明通过合理选择阵元发射信号载频可以有效去耦。展开更多
针对多小区下行多进单出(multiple-input single-output,MISO)干扰信道,在控制每个用户信漏噪比(signal to leakage plus noise ratio,SLNR)低于门限值的概率小于中断概率的约束条件下,以最小化系统总加权发射功率为优化目标设计线性预...针对多小区下行多进单出(multiple-input single-output,MISO)干扰信道,在控制每个用户信漏噪比(signal to leakage plus noise ratio,SLNR)低于门限值的概率小于中断概率的约束条件下,以最小化系统总加权发射功率为优化目标设计线性预编码。利用半定松弛和Bernstein-type不等式,将非凸的具有随机性的原始优化问题转换为确定性凸优化问题。仿真结果表明,所提出的预编码设计比worst-case等比较方案耗费的总加权发射功率更少。展开更多
The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-cod...The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.展开更多
With the popularity of green computing and the huge usage of networks,there is an acute need for expansion of the 5G network.5G is used where energy efficiency is the highest priority,and it can play a pinnacle role i...With the popularity of green computing and the huge usage of networks,there is an acute need for expansion of the 5G network.5G is used where energy efficiency is the highest priority,and it can play a pinnacle role in helping every industry to hit sustainability.While in the 5G network,conventional performance guides,such as network capacity and coverage are still major issues and need improvements.Device to Device communication(D2D)communication technology plays an important role to improve the capacity and coverage of 5G technology using different techniques.The issue of energy utilization in the IoT based system is a significant exploration center.Energy optimizationin D2D communication is an important point.We need to resolve this issue for increasing system performance.Green IoT speaks to the issue of lessening energy utilization of IoT gadgets which accomplishes a supportable climate for IoT systems.In this paper,we improve the capacity and coverage of 5G technology using Multiple Inputs Multiple Outputs(MU-MIMO).MUMIMO increases the capacity of 5G in D2D communication.We also present all the problems faced by 5G technology and proposed architecture to enhance system performance.展开更多
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out ...Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.展开更多
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
文摘双基多输入单输出(multiple input single output,MISO)地波雷达采用岸基均匀线阵发射多载频线性调频中断连续波FMICW信号,单根全向天线接收回波信号。由于各发射阵元所用载频不同,目标回波中存在距离-方位耦合。耦合严重时,空时超分辨算法将失效。借鉴比幅单脉冲测角思想,推导了该耦合关系,得到耦合系数以及影响该系数的因素,即阵元发射信号载频与阵元位置。利用遗传算法优化载频选择方案,从而对距离方位解耦以提高测距测角精度。仿真表明通过合理选择阵元发射信号载频可以有效去耦。
文摘针对多小区下行多进单出(multiple-input single-output,MISO)干扰信道,在控制每个用户信漏噪比(signal to leakage plus noise ratio,SLNR)低于门限值的概率小于中断概率的约束条件下,以最小化系统总加权发射功率为优化目标设计线性预编码。利用半定松弛和Bernstein-type不等式,将非凸的具有随机性的原始优化问题转换为确定性凸优化问题。仿真结果表明,所提出的预编码设计比worst-case等比较方案耗费的总加权发射功率更少。
基金supported by the National Natural Science Foundation of China(61101097)
文摘The differential chaotic shift keying (DCSK) communication in multiple input multiple output (MIMO) multipath fading chan- nels is considered. A simple MIMO-DCSK communication scheme based on orthogonal multi-codes (OMCs) and equal gain combination (EGC) is proposed, in which OMCs are used to spread the same information bit at each transmitting antenna and the infor- mation bit is detected by EGC at receiving antenna. The OMCs are constructed from one chaotic sequence by means of othogo- nal space-time block coding (OSTBC). The output signal-to-noise ratio (SNR) after EGC is given based on central limit theory (CLT), and it can effectively exploit the spatial diversity of the underlying MIMO system. Simulation results show that the full spatial diversity gain is achieved without channel estimation in the MIMO-DCSK communication scheme and it performs better than MC-EGC for a large number of transmitting antennas.
基金The authors extend their heartfelt thanks to the Department of Computer Science,College of Computer Science and Engineering,Taibah University Madinah,Saudi Arabia.
文摘With the popularity of green computing and the huge usage of networks,there is an acute need for expansion of the 5G network.5G is used where energy efficiency is the highest priority,and it can play a pinnacle role in helping every industry to hit sustainability.While in the 5G network,conventional performance guides,such as network capacity and coverage are still major issues and need improvements.Device to Device communication(D2D)communication technology plays an important role to improve the capacity and coverage of 5G technology using different techniques.The issue of energy utilization in the IoT based system is a significant exploration center.Energy optimizationin D2D communication is an important point.We need to resolve this issue for increasing system performance.Green IoT speaks to the issue of lessening energy utilization of IoT gadgets which accomplishes a supportable climate for IoT systems.In this paper,we improve the capacity and coverage of 5G technology using Multiple Inputs Multiple Outputs(MU-MIMO).MUMIMO increases the capacity of 5G in D2D communication.We also present all the problems faced by 5G technology and proposed architecture to enhance system performance.
基金support by the Central Power Research Institute,India(CPRI/RD/RSOP/GRANT/2015)
文摘Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.