期刊文献+
共找到894篇文章
< 1 2 45 >
每页显示 20 50 100
Influencing Factors of Museum Self-Improvement in China: A Multiple Linear Regression Analysis
1
作者 Zhenjing Gu Da Meng +1 位作者 Hui Yang Xiaofei Liu 《Proceedings of Business and Economic Studies》 2024年第6期238-250,共13页
The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for... The purpose of this research is to explore the factors influencing the self-improvement process of museums in China and to conduct empirical analyses based on multiple linear regression models.As core institutions for inheriting and displaying cultural heritage and enhancing public cultural literacy,museums’self-improvement is of great significance in promoting cultural development,optimizing the supply of public cultural services,and enhancing social influence.This paper constructs a multiple linear regression model for the influencing factors of museum self-improvement by integrating several key variables,including emerging cultural and museum business(EF),institutional reform(SR),research and innovation level(RIL),management level(ML),and the museum cultural and creative industry(MCCI).The study employs scientific methods such as literature review,data collection,and data analysis to thoroughly explore the internal logic of museum operations and development.Through multiple linear regression analyses,it quantifies the specific influence and relative importance of each factor on the level of museum self-improvement.The results indicate that the management level(ML)is the dominant factor among the variables studied,exerting the most significant influence on museum self-improvement.Based on these empirical findings,this paper provides an in-depth analysis of the specific factors affecting museum self-improvement in China,offering solid theoretical support and practical guidance for the sustainable development of museums. 展开更多
关键词 Museum self-improvement Influencing factors multiple linear regression model
在线阅读 下载PDF
Combined model based on optimized multi-variable grey model and multiple linear regression 被引量:12
2
作者 Pingping Xiong Yaoguo Dang +1 位作者 Xianghua wu Xuemei Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期615-620,共6页
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin... The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction. 展开更多
关键词 multi-variable grey model (MGM(1 m)) backgroundvalue OPTIMIZATION multiple linear regression combined predic-tion model.
在线阅读 下载PDF
Correlation Analysis of Fiscal Revenue and Housing Sales Price Based on Multiple Linear Regression Model
3
作者 Wei Zheng Xinyi Li +1 位作者 Nanxing Guan Kun Zhang 《数学计算(中英文版)》 2020年第1期3-12,共10页
This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis a... This paper selects seven indicators of financial revenue and housing sales price in recent 19 years in China,and uses SPSS and Excel to carry out descriptive statistics,independent sample t-test,correlation analysis and regression analysis to comprehensively study the correlation between financial revenue and housing sales price in China,and establishes the relationship between financial revenue and housing sales price When the average selling price of commercial housing increases by one unit,the fiscal revenue will increase by 27.855 points. 展开更多
关键词 Financial Revenue Housing Sales Price Correlation Analysis multiple linear regression model
在线阅读 下载PDF
A study of the mixed layer of the South China Sea based on the multiple linear regression 被引量:8
4
作者 DUAN Rui YANG Kunde +1 位作者 MA Yuanliang HU Tao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第6期19-31,共13页
Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea ... Multiple linear regression (MLR) method was applied to quantify the effects of the net heat flux (NHF), the net freshwater flux (NFF) and the wind stress on the mixed layer depth (MLD) of the South China Sea (SCS) based on the simple ocean data assimilation (SODA) dataset. The spatio-temporal distributions of the MLD, the buoyancy flux (combining the NHF and the NFF) and the wind stress of the SCS were presented. Then using an oceanic vertical mixing model, the MLD after a certain time under the same initial conditions but various pairs of boundary conditions (the three factors) was simulated. Applying the MLR method to the results, regression equations which modeling the relationship between the simulated MLD and the three factors were calculated. The equations indicate that when the NHF was negative, it was the primary driver of the mixed layer deepening; and when the NHF was positive, the wind stress played a more important role than that of the NHF while the NFF had the least effect. When the NHF was positive, the relative quantitative effects of the wind stress, the NHF, and the NFF were about i0, 6 and 2. The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid. 展开更多
关键词 mixed layer multiple linear regression South China Sea vertical mixing model
在线阅读 下载PDF
Application of Multiple Linear Regression and Manova to Evaluate Health Impacts Due to Changing River Water Quality 被引量:2
5
作者 Sudevi Basu K. S. Lokesh 《Applied Mathematics》 2014年第5期799-807,共9页
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa... Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts. 展开更多
关键词 multiple linear regression model MANOVA t-Statistics BOD COD TDS TC FC
在线阅读 下载PDF
基于MLR与ARDL的城市湖泊溶解氧浓度模拟
6
作者 赵洪铖 杨菲 +2 位作者 周鹏 郭家诚 黄金柏 《人民珠江》 2025年第1期32-39,共8页
开展城市湖泊溶解氧模拟研究,对促进湖泊水质模拟研究的进展具有重要作用。选取近扬州市中心附近的一个城市湖泊作为研究的特定区域,利用2020年溶解氧、蓝绿藻浓度、水温、电导率、pH观测结果,构建多元线性回归模型和自回归分布滞后模型... 开展城市湖泊溶解氧模拟研究,对促进湖泊水质模拟研究的进展具有重要作用。选取近扬州市中心附近的一个城市湖泊作为研究的特定区域,利用2020年溶解氧、蓝绿藻浓度、水温、电导率、pH观测结果,构建多元线性回归模型和自回归分布滞后模型,对2020年(2020-01-01至2020-12-31)和该年各季度的溶解氧观测序列值进行模拟,结果表明:前者模拟精度相对较低,后者的模拟精度较高,后者对不同时段溶解氧模拟结果的决定系数R^(2)在0.75~0.99;2种模型对湖泊溶解氧的模拟均有较好的适用性,其中,自回归分布滞后模型对时段变化溶解氧序列模拟的适用性更好。 展开更多
关键词 城市湖泊 溶解氧浓度 多元线性回归模型 自回归分布滞后模型
在线阅读 下载PDF
A Universal Selection Method in Linear Regression Models
7
作者 Eckhard Liebscher 《Open Journal of Statistics》 2012年第2期153-162,共10页
In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subj... In this paper we consider a linear regression model with fixed design. A new rule for the selection of a relevant submodel is introduced on the basis of parameter tests. One particular feature of the rule is that subjective grading of the model complexity can be incorporated. We provide bounds for the mis-selection error. Simulations show that by using the proposed selection rule, the mis-selection error can be controlled uniformly. 展开更多
关键词 linear regression model SELECTION multiple TESTS
在线阅读 下载PDF
基于MLR-DE-LSTM的大坝变形串联组合预测模型
8
作者 刘天翼 艾星星 张九丹 《中国农村水利水电》 北大核心 2025年第2期207-212,共6页
为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型... 为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型进行了验证。结果表明,DE算法可以有效提高LSTM模型的预测精度,LSTM模型可以有效挖掘MLR模型尚未完全解释的信息。相较于单一模型,组合模型在预测位移数据时具有更高的准确度和稳定性,组合模型在充分利用数据信息方面具有更大优势。研究结果为提高大坝变形预测精度提供了参考价值。 展开更多
关键词 大坝变形 差分进化算法 长短期记忆神经网络 多元线性回归 组合模型
在线阅读 下载PDF
Predicting the Acute Toxicity of Aromatic Amines by Linear and Nonlinear Regression Methods 被引量:5
9
作者 张晓龙 周志祥 +3 位作者 刘阳华 范雪兰 李捍东 王建涛 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第2期244-252,共9页
In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of ... In current paper, a quantitative structure-activity relationship (QSAR) study was performed for the prediction of acute toxicity of aromatic amines. A set of 56 compounds was randomly divided into a training set of 46 compounds and a test set of 10 compounds. The electronic and topological descriptors computed by the Scigress package and Dragon software were used as predictor variables. Multiple linear regression (MLR) and support vector machine (SVM) were utilized to build the linear and nonlinear QSAR models, respectively. The obtained models with five descriptors show strong predictive ability. The linear model fits the training set with R2 = 0.71, with higher SVM values of R2 = 0.77. The validation results obtained from the test set indicate that the SVM model is comparable or superior to that obtained by MLR, both in terms of prediction ability and robustness. 展开更多
关键词 aromatic amines acute toxicity quantitative structure-activity relationship(QSAR) support vector machine (SVM) multiple linear regression mlr
在线阅读 下载PDF
Gamma generalized linear model to investigate the effects of climate variables on the area burned by forest fire in northeast China 被引量:2
10
作者 Futao Guo Guangyu Wang +3 位作者 John L. Innes Xiangqing Ma Long Sun Haiqing Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期545-555,共11页
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r... The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire. 展开更多
关键词 Lightning-caused fire Human-caused fire multiple linear regression Log-linear model Daxing'anmountains
在线阅读 下载PDF
基于RF和MLR的土壤重金属影响因素分析及生物有效性预测 被引量:4
11
作者 潘泳兴 陈盟 +1 位作者 王櫹橦 刘楠 《农业环境科学学报》 CAS CSCD 北大核心 2024年第4期845-857,共13页
为探究影响土壤中重金属累积和生物有效性的因素,以桂北地区某铅锌矿流域为研究对象,综合运用单因子指数法、风险评价编码法(RAC)、多元线性回归模型(MLR)和随机森林模型(RF)进行土壤重金属(Pb、Zn、Cu和Cr)累积影响因素分析及生物有效... 为探究影响土壤中重金属累积和生物有效性的因素,以桂北地区某铅锌矿流域为研究对象,综合运用单因子指数法、风险评价编码法(RAC)、多元线性回归模型(MLR)和随机森林模型(RF)进行土壤重金属(Pb、Zn、Cu和Cr)累积影响因素分析及生物有效性预测。结果表明:研究区Cr含量无超标且空间分布相对均匀(变异系数为0.51);Cu、Pb和Zn的含量均值(分别为52.58、280.31 mg·kg^(-1)和654.71 mg·kg^(-1))均大于广西西江流域土壤重金属背景值,在思的河山前和地下河入口处全量和生物有效性均较大,对土壤生态环境具有一定风险;对于重金属全量分布和生物有效态的影响因素,阳离子交换量(CEC)、黏粒(Clay)、土壤有机质(SOM)和铁铝氧化物对Cr影响较大,SOM、Clay、pH和铁铝氧化物对Cu影响较大,pH、电导率(EC)和Clay对Pb影响较大,CEC、pH、土壤质地和铁铝氧化物对Zn影响较大;生物有效性预测结果显示RF和MLR均可较好地预测土壤重金属的全量与次生相,其中RF预测的R2区间为0.44~0.93,MLR预测的R2区间为0.30~0.72,RF预测结果表现更为准确。 展开更多
关键词 土壤重金属 影响因素 生物有效性预测 随机森林模型(RF) 多元线性回归模型(mlr)
在线阅读 下载PDF
基于APCS-MLR模型的煤矿开采对地下水的影响定量识别
12
作者 刘基 高敏 +1 位作者 陈引锋 靳德武 《中国煤炭地质》 2024年第10期45-51,44,共8页
中国煤炭与水资源储量呈逆向分布,煤炭基地水资源相对短缺,生态环境脆弱。随着煤炭资源的大规模和高强度开发,区域地下水环境问题越发凸显。为定量识别煤矿开采对地下水的影响程度,以蒙东能源基地某矿区为例,通过采集矿区周边地下水化... 中国煤炭与水资源储量呈逆向分布,煤炭基地水资源相对短缺,生态环境脆弱。随着煤炭资源的大规模和高强度开发,区域地下水环境问题越发凸显。为定量识别煤矿开采对地下水的影响程度,以蒙东能源基地某矿区为例,通过采集矿区周边地下水化学样品进行测试,系统分析了研究区地下水水化学特征,采用相关性分析、PCA等多元统计方法确定了地下水的影响因子,据此建立了基于绝对因子得分-多元线性回归法(APCS-MLR)的定量识别模型,对研究区地下水受煤矿开采的影响贡献进行了计算分析。结果显示:研究区浅层地下水pH值为6.52~7.86,平均7.27,TDS为126.14~2240.34mg/L,平均为638.18 mg/L。主要阳离子平均含量Na^(+)>Ca^(2+)>Mg^(2+)>K^(+),主要阴离子平均含量HCO_(3)^(-)>Cl^(-)>SO_(4)^(2-)>NO_(3)^(-)。其中Cl^(-)和SO_(4)^(2-)的含量分别为4.25~779.77 mg/L和0~483.20 mg/L,其变异系数均大于100%。SO_(4)^(2-)与Na^(+)、Ca^(+)、Mg^(2+)、Cl^(-)存在显著正相关关系(r>0.72,P<0.01),TDS与SO_(4)^(2-)、Na^(+)、Ca^(+)、Mg^(2+)、Cl^(-)存在显著正相关关系。多项指标显示研究区地下水水质已经受到了煤矿开采的影响。主成分分析(PCA)解析了4个地下水影响因子,分别为煤炭开采影响因子、自然因素的硅酸盐溶解因子、自然因素的反硝化作用和农业活动的化肥使用,其占总荷载的37.061%、16.067%、14.807%和8.775%。以SO_(4)^(2-)作为煤矿开采对地下水影响的表征因子,构建了SO_(4)^(2-)来源计算分析的APCS-MLR定量识别模型。通过最小二乘法计算得到模型的各项参数,确定SO_(4)^(2-)的实际浓度和预测浓度拟合曲线为y=0.9716x+2.9702(R^(2)=0.9759),说明构建的回归方程符合实际,效果良好。据此计算了4个地下水影响因子的贡献比分别为79.3%、6.06%、2.00%和9.96%,其他未识别的因子占比2.67%。分析了煤矿开采影响地下水水质的主要方式为形成降落漏斗影响周边水化学场以及外排含有特殊组分的矿井水进而影响地下水水质。因此需要采取合理措施控制煤矿开采产生的降落漏斗范围继续扩大,必要时对已经产生的漏斗进行恢复治理,同时加强对高盐、高SO_(4)^(2-)矿井水的处理和排放管理,研究成果可为煤炭绿色开发和环境高质量发展提供技术支持。 展开更多
关键词 煤矿开采 地下水 绝对因子得分-多元线性回归(APCS-mlr) 定量识别 影响因子
在线阅读 下载PDF
Regression analysis and its application to oil and gas exploration:A case study of hydrocarbon loss recovery and porosity prediction,China
13
作者 Yang Li Xiaoguang Li +3 位作者 Mingyu Guo Chang Chen Pengbo Ni Zijian Huang 《Energy Geoscience》 EI 2024年第4期240-252,共13页
In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not... In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery. 展开更多
关键词 regression analysis Oil and gas exploration multiple linear regression model Nonlinear regression model Hydrocarbon loss recovery Porosity prediction
在线阅读 下载PDF
Analysis and Evaluation of Housing Price Factors Using Mathematical Modeling
14
作者 Xing Lyu 《Proceedings of Business and Economic Studies》 2024年第6期17-23,共7页
In recent years,the real estate industry has achieved significant progress,driving the development of related sectors and playing a crucial role in economic growth.However,rapid real estate market expansion has led to... In recent years,the real estate industry has achieved significant progress,driving the development of related sectors and playing a crucial role in economic growth.However,rapid real estate market expansion has led to challenges,particularly concerning housing prices,which have drawn widespread societal attention.This article explores the theories of housing prices,analyzes factors influencing them,and conducts an empirical investigation of the impact of representative factors on ordinary residential prices.Using regression analysis and the entropy weight method,a mathematical model was developed to examine how various factors affect housing prices. 展开更多
关键词 Mathematical modeling regression analysis Housing price Formation factors multiple linear regression H ypothesis testing multiple decision coefficients
在线阅读 下载PDF
BiPLS结合GA优选可见/近红外光谱MLR变量 被引量:13
15
作者 李鹏飞 王加华 +1 位作者 曹楠宁 韩东海 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第10期2637-2641,共5页
利用反向区间偏最小二乘法(BiPLS)定位光谱糖度若干信息区间,运用遗传算法(GA)从中选择波长点,建立了多元线性回归(MLR)模型。光谱进行卷积平滑和二阶导数处理后,将光谱(225个数据点)分割成25个子区间时,BiPLS优化结果最优。在所定位的... 利用反向区间偏最小二乘法(BiPLS)定位光谱糖度若干信息区间,运用遗传算法(GA)从中选择波长点,建立了多元线性回归(MLR)模型。光谱进行卷积平滑和二阶导数处理后,将光谱(225个数据点)分割成25个子区间时,BiPLS优化结果最优。在所定位的信息区间进行GA二次选择特征变量,运行100次依次选择入选频率较高的12个波长点。为简化MLR模型,对于入选的相邻波长选择频率较高者,最后选择638,734,752,868,910,916和938nm作为回归变量,建立的MLR预测模型相关系数(R2)、校正均方根误差(RMSEC)和预测均方根误差(RMSEP)分别为0.984,0.364和0.471,优于常用的逐步多元线性回归的建模结果。表明BiPLS结合GA可以有效地对李子糖度可见/近红外光谱MLR回归变量进行筛选,提高了模型的精度。 展开更多
关键词 可见/近红外光谱 反向区间偏最小二乘法 遗传算法 多元线性回归 变量筛选
在线阅读 下载PDF
MLR和ARIMA模型在民航安全业绩预测中的应用 被引量:14
16
作者 程明 梁文娟 《中国安全科学学报》 CAS CSCD 北大核心 2016年第2期25-30,共6页
为预测民航安全业绩发展趋势,通过散点图、相关系数、主因子分析等多种统计方法,筛选5大类、共计20项与民航安全运行关系密切的社会经济指标,建立民航综合安全指数MLR模型;依据中国民航在1995—2014年间的安全生产历史数据,分析其发展... 为预测民航安全业绩发展趋势,通过散点图、相关系数、主因子分析等多种统计方法,筛选5大类、共计20项与民航安全运行关系密切的社会经济指标,建立民航综合安全指数MLR模型;依据中国民航在1995—2014年间的安全生产历史数据,分析其发展历史、现状、特征与存在的问题,并利用ARIMA模型进行预测分析。结果表明,人员素质因子和技术能力因子对民航安全均有显著影响;民航安全综合指数预测值在2015—2017年间总体稳定;MLR方法和ARIMA模型对民航安全趋势的耦合分析结果良好。 展开更多
关键词 安全综合指数 民航 经济社会指标 多元线性回归(mlr) 自回归移动平均(ARIMA)模型 因子分析
在线阅读 下载PDF
历史性街道活力测度与提升研究
17
作者 张哲 黄春华 《现代城市研究》 北大核心 2025年第2期74-81,共8页
高密度城市蔓延背景下,激活和维护历史街道空间活力对城市良性循环至关重要。基于情感语义分析和LDA主题模型,文章结合实地调研和网络数据,构建了历史性街道空间活力评价指标体系。文章通过多元线性回归方程,探究济南市百花洲历史性街... 高密度城市蔓延背景下,激活和维护历史街道空间活力对城市良性循环至关重要。基于情感语义分析和LDA主题模型,文章结合实地调研和网络数据,构建了历史性街道空间活力评价指标体系。文章通过多元线性回归方程,探究济南市百花洲历史性街区街道活力现状及其影响因素。研究发现,百花洲街区活力南北高、东西低,分布不均。街道空间整合度、选择度、业态密度和视域对活力有显著正向影响。利用sDNA等方法评估影响因素,提出优化措施,以促进历史性街道的可持续发展。 展开更多
关键词 济南百花洲 历史性街道 街道空间活力 情感语义分析 LDA主题模型 sDNA 多元线性回归方程
在线阅读 下载PDF
防辐射罩区域自动气象站气温观测偏差分析及其订正方法
18
作者 王星宇 严婧 +2 位作者 刘莹 刘园园 孙越 《暴雨灾害》 2025年第1期112-122,共11页
分析防辐射罩区域自动气象站气温值偏差变化特征,有助于自动站气温资料质量的订正,进而提高自动站气温资料的可用性。因此,基于2019年6月—2022年5月湖北省防辐射罩区域自动气象站及与其邻近的百叶箱站观测的逐小时气温资料,首先分析两... 分析防辐射罩区域自动气象站气温值偏差变化特征,有助于自动站气温资料质量的订正,进而提高自动站气温资料的可用性。因此,基于2019年6月—2022年5月湖北省防辐射罩区域自动气象站及与其邻近的百叶箱站观测的逐小时气温资料,首先分析两类站点间小时气温偏差(T_(bs))的季节变化和日变化特征,并探讨降水、相对湿度、日照、风速等气象要素对T_(bs)的影响;然后,基于多元线性回归和随机森林方法,分别建立两种防辐射罩站观测气温订正模型,评估两种模型对防辐射罩站气温观测偏差的订正效果。结果表明:(1)总体上,白天时段防辐射罩站小时观测气温较其邻近百叶箱站加权平均小时观测气温要高,防辐射罩站年均高温日数较其邻近百叶箱站偏高20.0 d;(2)T_(bs)存在明显季节变化和日变化特征,总体呈现夏季高、冬季低且日间高、夜间和清晨低的特点,平均T_(bs)在晴天13:00(北京时,下同)最高,可达到1.0℃以上;(3)T_(bs)会随站点气象条件的变化而变化,在无降水现象时较大,而有降水时接近0℃;T_(bs)与相对湿度负相关,而与日照时数正相关,与风速则是先呈现正相关,随着风速增大至临界值以后呈现负相关;(4)多元线性回归和随机森林模型对防辐射罩站气温观测偏差均有较好的订正效果,使平均T_(bs)由0.72℃分别降至0.17℃和0.16℃。随机森林模型的订正效果总体优于多元线性回归模型,且对超过35℃的高温订正效果更佳,订正后防辐射罩站总高温日数下降比例超过55%。 展开更多
关键词 区域自动气象站 防辐射罩 气温观测偏差订正 多元线性回归模型 随机森林模型
在线阅读 下载PDF
延长油田井下分层注水流量计误差补偿方法
19
作者 李硕 齐春民 +2 位作者 刘刚 李金阳 成城 《化工自动化及仪表》 2025年第1期32-38,共7页
提出一种针对延长油田井下分层注水的流量计误差补偿方法。根据流量计测量原理获取流量计测量值,并在此基础上完成流量计示值校正;针对由温度和流体状态引起的流量计误差,开展温度与流体状态的解耦处理。设计一种多元线性回归模型,分析... 提出一种针对延长油田井下分层注水的流量计误差补偿方法。根据流量计测量原理获取流量计测量值,并在此基础上完成流量计示值校正;针对由温度和流体状态引起的流量计误差,开展温度与流体状态的解耦处理。设计一种多元线性回归模型,分析多个温度因变量与测量值的关系,得到最优补偿系数估计值,将求取的系数向量代入根据多元线性回归模型得到的输出信号多元线性回归方程,即可得到温度补偿后的流量值。通过雷诺数获取注水流体状态,定义上临界速度和下临界速度,并设计补偿系数计算方法,完成误差补偿。实验结果表明:利用所提方法完成误差补偿后,提高了流量计的测量准确性。 展开更多
关键词 流量计 示值校正 误差补偿 多元线性回归模型 流体状态 井下分层注水
在线阅读 下载PDF
复杂水流条件下侧扫雷达流量在线监测精度提升研究
20
作者 蒋飞卿 陈宇飞 +4 位作者 朱易青 张志强 王蓓 嵇海祥 王赠安 《水文》 北大核心 2025年第1期22-29,共8页
侧扫雷达流量在线监测能够提高监测效率和质量、扩大监测范围和密度,但在水利工程影响等复杂水流条件下,其应用精度面临挑战。综合考虑各种流量影响因素,分别构建基于多元线性回归模型、机器学习最小绝对收缩和选择算子(LASSO)模型、深... 侧扫雷达流量在线监测能够提高监测效率和质量、扩大监测范围和密度,但在水利工程影响等复杂水流条件下,其应用精度面临挑战。综合考虑各种流量影响因素,分别构建基于多元线性回归模型、机器学习最小绝对收缩和选择算子(LASSO)模型、深度学习长短记忆网络(LSTM)模型的侧扫雷达流量在线监测精度提升方案,并进行比较分析。在允景洪水文站的应用表明:(1)三种推流方案均满足规范要求,可为允景洪水文站及类似受水利工程影响测站的侧扫雷达推流方案构建提供参考。(2)LASSO模型最优,较常规的多元回归模型精度提升了22.93%;多元回归模型精度略低于LASSO模型,但构建简单,适用于需要快速推流的情况;LSTM模型虽然复杂度最高,但精度却最低。研究结果可为侧扫雷达推流方案的改进和优化提供思路和方法。 展开更多
关键词 侧扫雷达流量在线监测 复杂水流条件 推流方案 允景洪水文站 多元线性回归模型 LASSO模型 LSTM模型
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部