Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment...Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.展开更多
Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the...Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity.展开更多
Based on the experimental data of crop yield, soil water and fertility of a dryland farming ecosystem in northwest China, asystematic analysis is carried out to study the dynamics of dryland farming ecosystem producti...Based on the experimental data of crop yield, soil water and fertility of a dryland farming ecosystem in northwest China, asystematic analysis is carried out to study the dynamics of dryland farming ecosystem productivity and its limitingfactors. This paper also discusses which of the two limiting factors, i.e., soil water or fertility, is the primary factor and theirdynamics. The result shows that fertility is the primary limiting factor when the productivity is rather low. As chemicalfertilizer input increases and the productivity promotes, water gradually becomes the primary limiting factor. Chemicalfertilizers and plastic film mulching are the two major driving forces that determine the crop productivity and its stabilityin these areas.展开更多
The succession and enhancement mechanism of the ecosystem productivity with the characteristics ot de-tarmlng in me ecotone between agriculture and animal husbandry in North China was discussed in order to provide an ...The succession and enhancement mechanism of the ecosystem productivity with the characteristics ot de-tarmlng in me ecotone between agriculture and animal husbandry in North China was discussed in order to provide an ideaology or a technical basis for maintaining the impetus of ecological restoration and economic development in this region. A case study was applied in combination with the theoretical analysis. The results indicated that the biomass productivity of the de-farming subsystem decreased by 38.4-72.3% compared with that of farming subsystem in the ecosystem. The main function of de-farming subsystem was focused on ecological productivity, it caused the ideal beneficial recycling ‘defarming → planting grass → raising animals → earn money' difficult to be realized. With the differentiation of de-farming subsystem, the natural and social resources input to the farming subsystem were accumulated. This laid a basis for the new attributes of economic productivity to be upgraded. The case study indicated that the economic productivity of the ecosystem was increased by 8.85-13.35 times due to re-coupling between the de-farming subsystem and the farming subsystem as well as coupling between microhabitat differentiation and crop production in the subsystems, where the microhabitat differentiation could enrich water and fertilizer in the same field. It was concluded that the important mechanisms to enhance the system productivity in the ecotone between agriculture and animal husbandry of North China included structure rebuilding and opening of the de-farming ecosystem and taking the advantage of complementary cooperative production among different regions under the market economy and rebuilding an open agro-pasture production structure,展开更多
Software productivity has always been one of the most critical metrics for measuring software development.However,with the open-source community(e.g.,GitHub),new software development models are emerging.The traditiona...Software productivity has always been one of the most critical metrics for measuring software development.However,with the open-source community(e.g.,GitHub),new software development models are emerging.The traditional productivity metrics do not provide a comprehensive measure of the new software development models.Therefore,it is necessary to build a productivity measurement model of open source software ecosystem suitable for the open-source community’s production activities.Based on the natural ecosystem,this paper proposes concepts related to the productivity of open source software ecosystems,analyses influencing factors of open source software ecosystem productivity,and constructs a measurement model using these factors.Model validation experiments show that the model is compatible with a large portion of open source software ecosystems in GitHub.This study can provide references for participants of the open-source software ecosystem to choose proper types of ecosystems.The study also provides a basis for ecosystem health assessment for researchers interested in ecosystem quality.展开更多
Using meteorological data and mathematical statistics analysis,we take Jungar Banner in the northern farming-pastoral region of China for example,to analyze the fluctuations in the precipitation and average temperatur...Using meteorological data and mathematical statistics analysis,we take Jungar Banner in the northern farming-pastoral region of China for example,to analyze the fluctuations in the precipitation and average temperature in Jungar Banner during the period 1961-2009.We calculate the NPP of agricultural ecosystem and climatic yield of the main crops in the region during the period 1961-2009,and expound the response of agricultural ecosystem productivity to climate fluctuations in Jungar Banner.Indubitably the climate changes impose great effects on the structure and function of regional ecosystem,and there is a need to take a number of measures to minimize the detrimental effects of climate changes on climatic yield of the main crops.展开更多
Based on the concept of“Lucid waters and lush mountains are invaluable assets”,Chinese government is relying on the ecological and environmental characteristics of cities,in combination with modern ecological,econom...Based on the concept of“Lucid waters and lush mountains are invaluable assets”,Chinese government is relying on the ecological and environmental characteristics of cities,in combination with modern ecological,economic,and sociological theories,to achieve sustainable urban development.However,the value realization of ecological products(EP)faces challenges in four major aspects:quantification,trading,transformation,and sustainability.At this stage,seeking breakthroughs to form a stable development path for the realization of the value of EPs is crucial.This paper examines the Guilin Sustainable Development Innovation Demonstration Zone and conducts a case study on oil tea,a characteristic EP.Based on the value realization of EPs,this paper analyzes the oil tea industry in terms of three functions:ecological protection,regional economic development,and traditional cultural support.Drawing on the theory of the gross ecosystem product,this paper examines the role of the value realization of oil tea in improving the quality of the urban living environment and ecosystem functions in Guilin.The results can help promote research on the shaping effects of endemic EPs on sustainable development with respect to the urban economy.Taking a human-centered perspective,the principles of landsenses ecology and traditional ecological knowledge can help analyze the social,historical,and cultural value of oil tea.Combined with on-site research data,a relationship map centered on oil tea culture is created to explore the importance of developing traditional cultural attributes of local EPs in promoting cultural customs,protecting the cultural diversity of ethnic minorities,and driving the development of the cultural tourism industry.By constructing a sustainable urban development model centered on developing local characteristic EPs with the core elements of ecology-economy-traditional culture,this paper aims to strengthen the ecological protection function of cities,promote high-quality economic development,and enhance the soft power of traditional culture.It provides scientific support for the sustainable development planning in Guilin.展开更多
作为我国第二大林区,西南林区生态环境脆弱、气候变化敏感,特别是近年来受气候、环境等因素影响,林区固碳功能已出现变化,引起了广泛关注。因此,在气候变化背景下开展西南林区固碳能力的时空动态演变及其驱动影响研究具有重要意义。采...作为我国第二大林区,西南林区生态环境脆弱、气候变化敏感,特别是近年来受气候、环境等因素影响,林区固碳功能已出现变化,引起了广泛关注。因此,在气候变化背景下开展西南林区固碳能力的时空动态演变及其驱动影响研究具有重要意义。采用陆地生态系统碳通量模型和土壤呼吸模型,结合气象和遥感资料,对2001—2021年西南林区净生态系统生产力(Net Ecosystem Productivity, NEP)进行评估。采用Theil-Sen趋势分析、Mann-Kendall趋势检验和Hurst指数,分析西南林区NEP变化的趋势特征与可持续性特征;基于偏相关性分析和地理探测器模型等方法,定量评估气温、降水、坡向坡度等气候环境因子对森林NEP的影响程度。结果表明:(1)西南林区多年平均NEP为333.8 g C m^(-2)a^(-1)(3.338 t C hm^(-2)a^(-1)),总体表现为碳汇,且2001—2021年林区NEP呈现波动增长趋势,平均每年增加3.9 g C m^(-2)a^(-1)(0.039 t C hm^(-2)a^(-1))。其中,NEP达到显著增加趋势的面积,占林区总面积的33.2%,主要分布在四川北部、云南西南部等地。落叶阔叶林和贵州林区NEP增加趋势最大,平均每年分别增加4.5 g C m^(-2)a^(-1)(0.045 t C hm^(-2)a^(-1))和5.9 g C m^(-2)a^(-1)(0.059 t C hm^(-2)a^(-1))。(2)从变化持续性看,大部林区NEP的Hurst指数小于0.5,表明NEP未来变化趋势与过去相反,林区NEP未来可能呈下降趋势,其中NEP由增加趋势变为减少趋势的林区面积占比达到64.6%。但是依然有30.5%林区NEP未来变化呈增加趋势,其中云南林区分布最多(57.1%)、四川次之(36.2%)。(3)从时间尺度的影响分析来看,近20年西南大部林区NEP与降水具有负相关性、与蒸散和气温具有正相关性,其中蒸散是影响林区NEP的第一关键气候因子,影响面积占比67.2%,降水影响范围次之(21.3%),气温影响范围第三(6.1%)。但是关键气候因子在不同森林类型间存在一定差异,其中降水是影响贵州灌丛和常绿阔叶林NEP的第一关键气候因子,而气温是影响贵州针叶林NEP的第一关键气候因子。(4)从空间分布的影响分析来看,气候环境因素对固碳功能的影响较为复杂,其中气温、辐射、高程是对西南林区NEP空间分异解释力最强的前三个因子。但是在贵州和重庆林区,各因子对NEP解释力均明显偏弱(q值<0.1),表明气候环境因素对林区NEP空间分布驱动机制更为复杂。此外,各因子间对林区NEP空间分布变化存在交互作用,分别属于双因子增强或非线性增强作用。其中最大交互影响力分别为,气温∩日照(q值=0.33)、辐射∩蒸散(q值=0.31),气温∩辐射(q值=0.29),表明这些因子交互作用对西南林区NEP空间分布的影响占主导地位。本研究结果将有助于揭示森林NEP对气候环境变化的响应机制,为西南林区碳中和研究提供基础数据支持。展开更多
Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the glo...Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.展开更多
Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about ...Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about the key factors controlling the variability of forest NPP.Methods:This paper established a statistics-based multiple regression model to estimate forest NPP,using the observed NPP,meteorological and remote sensing data in five major forest ecosystems.The fluctuation values of NPP and environment variables were extracted to identify the key variables influencing the variation of forest NPP by correlation analysis.Results:The long-term trends and annual fluctuations of forest NPP between 2000 and 2018 were examined.The results showed a significant increase in forest NPP for all five forest ecosystems,with an average rise of 5.2 gC·m-2·year-1 over China.Over 90%of the forest area had an increasing NPP range of 0-161 gC·m-2·year-1.Forest NPP had an interannual fluctuation of 50-269 gC.m-2·year-1 for the five major forest ecosystems.The evergreen broadleaf forest had the largest fluctuation.The variability in forest NPP was caused mainly by variations in precipitation,then by temperature fluctuations.Conclusions:All five forest ecosystems in China exhibited a significant increasing NPP along with annual fluctuations evidently during 2000-2018.The variations in China’s forest NPP were controlled mainly by changes in precipitation.展开更多
Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle ...Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.展开更多
The paper deals with the biomass and productivity of sal (SF) and miscellaneous forests (MF) of Satpura plateau (Madhya Pradesh) India. These forest types were divided into four sites namely open miscellaneous (OMF, s...The paper deals with the biomass and productivity of sal (SF) and miscellaneous forests (MF) of Satpura plateau (Madhya Pradesh) India. These forest types were divided into four sites namely open miscellaneous (OMF, site-I), closed miscellaneous (CMF, site-II), open sal (OSF, site-III) and closed sal (CSF, site-IV). The degree of disturbance followed the order: III (0.70) 109 (III) > 79.80 (I) > 52.69 (II), while for NPPherb, the order of importance was, 109.50 (IV) > 73.27 (I) > (II), 71.75 (III) > 55.71 (II). NPPtotal was highest for closed forest stands than of the open ones. NPPteak was lower for high-disturbed site than of the less disturbed site. Photosynthetic/ non - photosynthetic ratio follows the order: 0.067 (II) > 0.030 (III) > 0.026 (IV) > 0.018 (I). Open forests showed lower values for this ratio. NEP was higher for SF than of the MF. Further closed forests showed higher values of NEP. OSF showed lower values of NEPsal than of the CSF. Disturbances in open forests not only reduced stand biomass of tree species, dominant species in particular, but also declined the tree productivity. So, gap filling plantation in side the forest is suggested to improve the productivity of open forests.展开更多
As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, whic...As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.展开更多
This study aims at quantifying the most important ecosystem services: forage production, timber production and carbon sequestration provided by Pterocarpus lucens to local communities of Ferlo Biosphere Reserve. The r...This study aims at quantifying the most important ecosystem services: forage production, timber production and carbon sequestration provided by Pterocarpus lucens to local communities of Ferlo Biosphere Reserve. The results suggested that the ecological structure of Pterocarpus lucens revealed a bell-shaped form with left dissymmetric distribution indicating a predominance of individuals with small circumference and height. A regression using the software Minitab 16, with circumference and the height as explanatory variables, has allowed a development of predictive models for the estimation of the produced forage and the quantification of the timber supplied by one of the most used plant species in Sahelian pastures. Forage production of Pterocarpus lucens was estimated at 178 kg DM/ha. This large value of forage showed the predominance of this species in animal feed in the Sahel. The quantity of wood produced was 545 kg DM/ha while the quantity of above ground sequestered carbon was 325.35 kg of C/ha. Those estimations are interesting in the implementation context of the Ferlo Biosphere Reserve which aims at matching the productive capacity of ecosystems with the needs of local communities.展开更多
Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diver...Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diversity are expected to accumulate over time. Here, I present findings from a 31-year-old tree diversity experiment(as of2018) in Japan.Results: I find that the net diversity effect on stand biomass increased linearly through time. The species mixture achieved 64% greater biomass than the average monoculture biomass 31 years after planting. The complementarity effect was positive and increased exponentially with time. The selection effect was negative and decreased exponentially with time. In the early stages(≤ 3 years), the positive complementarity effect was explained by enhanced growths of early-and mid-successional species in the mixture. Later on(≥ 15 years), it was explained by their increased survival rates owing to vertical spatial partitioning — i.e. alleviation of self-thinning via canopy stratification. The negative selection effect resulted from suppressed growths of late-successional species in the bottom layer.Conclusions: The experiment provides pioneering evidence that the positive impacts of diversity-driven spatial partitioning on forest biomass can accumulate over multiple decades. The results indicate that forest biomass production and carbon sequestration can be enhanced by multispecies afforestation strategies.展开更多
The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,cl...The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems.However,the trade-offs and synergies between ecosystem services(ESs)have not been thoroughly examined.This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs.Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)and Revised Wind Erosion Equation(RWEQ)using land use/land cover(LULC),climate,vegetation,soil,and hydrological data,we quantified the spatiotemporal changes in the five principal ESs(carbon storage,water yield,food production,wind and sand prevention,and habitat quality)of the watershed from 1995 to 2020.Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs.The findings reveal that water yield,carbon storage,and habitat quality exhibited relatively high levels in the upstream,while food production and wind and sand prevention dominated the midstream and downstream,respectively.Furthermore,carbon storage,food production,wind and sand prevention,and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020.Specifically,carbon storage,wind and sand prevention,and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream.Food production in the midstream showed a continuously increasing trend during the study period.Trade-off relationships were identified between water yield and wind and sand prevention,water yield and carbon storage,food production and water yield,and habitat quality and wind and sand prevention.Prominent temporal and spatial synergistic relationships were observed between different ESs,notably between carbon storage and habitat quality,carbon storage and food production,food production and wind and sand prevention,and food production and habitat quality.Water resources emerged as a decisive factor for the sustainable development of the basin,thus highlighting the intricate trade-offs and synergies between water yield and the other four services,particularly the relationship with food production,which warrants further attention.This research is of great significance for the protection and sustainable development of river basins in arid areas.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
基金supported by the National Key Research and Development Program of China (No. 2016YFC0502104,No. 2017YFC0503901)the National Natural Science Foundation of China (No. 31870430)。
文摘Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
基金This study was co-supported by the National Key R&D Program of China[grant number 2017YFA0604302]the National Natural Science Foundation of China[grant numbers 41475099 and 41875137]the Chinese Academy of Sciences Key Research Program of Frontier Sciences[grant number QYZDY-SSW-DQC002].
文摘Fire is a global phenomenon and a major source of aerosols from the terrestrial biosphere to the atmosphere.Most previous studies quantified the effect of fire aerosols on climate and atmospheric circulation,or on the regional and site-scale terrestrial ecosystem productivity.So far,only one work has quantified their global impacts on terrestrial ecosystem productivity based on offline simulations,which,however,did not consider the impacts of aerosol–cloud interactions and aerosol–climate feedbacks.This study quantitatively assesses the influence of fire aerosols on the global annual gross primary productivity(GPP)of terrestrial ecosystems using simulations with the fully coupled global Earth system model CESM1.2.Results show that fire aerosols generally decrease GPP in vegetated areas,with a global total of−1.6 Pg C yr^−1,mainly because fire aerosols cool and dry the land surface and weaken the direct photosynthetically active radiation(PAR).The exception to this is the Amazon region,which is mainly due to a fire-aerosol-induced wetter land surface and increased diffuse PAR.This study emphasizes the importance of the influence of fire aerosols on climate in quantifying global-scale fire aerosols’impacts on terrestrial ecosystem productivity.
基金supported by the National Key Research and Development Program of China[grant number 2022YFE0106500]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2022076]the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab)[grant number 2023-EL-ZD-00012].
基金supported by the National Natural Science Foundation of China(90102012)the Chinese Ecosystem Research Network(2001BA508B18
文摘Based on the experimental data of crop yield, soil water and fertility of a dryland farming ecosystem in northwest China, asystematic analysis is carried out to study the dynamics of dryland farming ecosystem productivity and its limitingfactors. This paper also discusses which of the two limiting factors, i.e., soil water or fertility, is the primary factor and theirdynamics. The result shows that fertility is the primary limiting factor when the productivity is rather low. As chemicalfertilizer input increases and the productivity promotes, water gradually becomes the primary limiting factor. Chemicalfertilizers and plastic film mulching are the two major driving forces that determine the crop productivity and its stabilityin these areas.
文摘The succession and enhancement mechanism of the ecosystem productivity with the characteristics ot de-tarmlng in me ecotone between agriculture and animal husbandry in North China was discussed in order to provide an ideaology or a technical basis for maintaining the impetus of ecological restoration and economic development in this region. A case study was applied in combination with the theoretical analysis. The results indicated that the biomass productivity of the de-farming subsystem decreased by 38.4-72.3% compared with that of farming subsystem in the ecosystem. The main function of de-farming subsystem was focused on ecological productivity, it caused the ideal beneficial recycling ‘defarming → planting grass → raising animals → earn money' difficult to be realized. With the differentiation of de-farming subsystem, the natural and social resources input to the farming subsystem were accumulated. This laid a basis for the new attributes of economic productivity to be upgraded. The case study indicated that the economic productivity of the ecosystem was increased by 8.85-13.35 times due to re-coupling between the de-farming subsystem and the farming subsystem as well as coupling between microhabitat differentiation and crop production in the subsystems, where the microhabitat differentiation could enrich water and fertilizer in the same field. It was concluded that the important mechanisms to enhance the system productivity in the ecotone between agriculture and animal husbandry of North China included structure rebuilding and opening of the de-farming ecosystem and taking the advantage of complementary cooperative production among different regions under the market economy and rebuilding an open agro-pasture production structure,
基金supported in part by the National Key R&D Program of China under Grant No.2018YFB1003800.
文摘Software productivity has always been one of the most critical metrics for measuring software development.However,with the open-source community(e.g.,GitHub),new software development models are emerging.The traditional productivity metrics do not provide a comprehensive measure of the new software development models.Therefore,it is necessary to build a productivity measurement model of open source software ecosystem suitable for the open-source community’s production activities.Based on the natural ecosystem,this paper proposes concepts related to the productivity of open source software ecosystems,analyses influencing factors of open source software ecosystem productivity,and constructs a measurement model using these factors.Model validation experiments show that the model is compatible with a large portion of open source software ecosystems in GitHub.This study can provide references for participants of the open-source software ecosystem to choose proper types of ecosystems.The study also provides a basis for ecosystem health assessment for researchers interested in ecosystem quality.
基金the Doctoral Program of Higher Education(20120003110017)the Natural Science Foundation of Gansu Province(1308RJZA285)the Academic Upgrading Scheme for Young Teachers of Northwest Normal Univer-sity(NWNU-LKON-12-33)
文摘Using meteorological data and mathematical statistics analysis,we take Jungar Banner in the northern farming-pastoral region of China for example,to analyze the fluctuations in the precipitation and average temperature in Jungar Banner during the period 1961-2009.We calculate the NPP of agricultural ecosystem and climatic yield of the main crops in the region during the period 1961-2009,and expound the response of agricultural ecosystem productivity to climate fluctuations in Jungar Banner.Indubitably the climate changes impose great effects on the structure and function of regional ecosystem,and there is a need to take a number of measures to minimize the detrimental effects of climate changes on climatic yield of the main crops.
基金supported by the National Key Research and Development Program of China“Research on urban sustainable development evaluation data fusion management technology”[Grant No.2022YFC3802903]the Strategic Priority Research Program of the Chinese Academy of Sciences[Grant No.XDA23030403].
文摘Based on the concept of“Lucid waters and lush mountains are invaluable assets”,Chinese government is relying on the ecological and environmental characteristics of cities,in combination with modern ecological,economic,and sociological theories,to achieve sustainable urban development.However,the value realization of ecological products(EP)faces challenges in four major aspects:quantification,trading,transformation,and sustainability.At this stage,seeking breakthroughs to form a stable development path for the realization of the value of EPs is crucial.This paper examines the Guilin Sustainable Development Innovation Demonstration Zone and conducts a case study on oil tea,a characteristic EP.Based on the value realization of EPs,this paper analyzes the oil tea industry in terms of three functions:ecological protection,regional economic development,and traditional cultural support.Drawing on the theory of the gross ecosystem product,this paper examines the role of the value realization of oil tea in improving the quality of the urban living environment and ecosystem functions in Guilin.The results can help promote research on the shaping effects of endemic EPs on sustainable development with respect to the urban economy.Taking a human-centered perspective,the principles of landsenses ecology and traditional ecological knowledge can help analyze the social,historical,and cultural value of oil tea.Combined with on-site research data,a relationship map centered on oil tea culture is created to explore the importance of developing traditional cultural attributes of local EPs in promoting cultural customs,protecting the cultural diversity of ethnic minorities,and driving the development of the cultural tourism industry.By constructing a sustainable urban development model centered on developing local characteristic EPs with the core elements of ecology-economy-traditional culture,this paper aims to strengthen the ecological protection function of cities,promote high-quality economic development,and enhance the soft power of traditional culture.It provides scientific support for the sustainable development planning in Guilin.
文摘作为我国第二大林区,西南林区生态环境脆弱、气候变化敏感,特别是近年来受气候、环境等因素影响,林区固碳功能已出现变化,引起了广泛关注。因此,在气候变化背景下开展西南林区固碳能力的时空动态演变及其驱动影响研究具有重要意义。采用陆地生态系统碳通量模型和土壤呼吸模型,结合气象和遥感资料,对2001—2021年西南林区净生态系统生产力(Net Ecosystem Productivity, NEP)进行评估。采用Theil-Sen趋势分析、Mann-Kendall趋势检验和Hurst指数,分析西南林区NEP变化的趋势特征与可持续性特征;基于偏相关性分析和地理探测器模型等方法,定量评估气温、降水、坡向坡度等气候环境因子对森林NEP的影响程度。结果表明:(1)西南林区多年平均NEP为333.8 g C m^(-2)a^(-1)(3.338 t C hm^(-2)a^(-1)),总体表现为碳汇,且2001—2021年林区NEP呈现波动增长趋势,平均每年增加3.9 g C m^(-2)a^(-1)(0.039 t C hm^(-2)a^(-1))。其中,NEP达到显著增加趋势的面积,占林区总面积的33.2%,主要分布在四川北部、云南西南部等地。落叶阔叶林和贵州林区NEP增加趋势最大,平均每年分别增加4.5 g C m^(-2)a^(-1)(0.045 t C hm^(-2)a^(-1))和5.9 g C m^(-2)a^(-1)(0.059 t C hm^(-2)a^(-1))。(2)从变化持续性看,大部林区NEP的Hurst指数小于0.5,表明NEP未来变化趋势与过去相反,林区NEP未来可能呈下降趋势,其中NEP由增加趋势变为减少趋势的林区面积占比达到64.6%。但是依然有30.5%林区NEP未来变化呈增加趋势,其中云南林区分布最多(57.1%)、四川次之(36.2%)。(3)从时间尺度的影响分析来看,近20年西南大部林区NEP与降水具有负相关性、与蒸散和气温具有正相关性,其中蒸散是影响林区NEP的第一关键气候因子,影响面积占比67.2%,降水影响范围次之(21.3%),气温影响范围第三(6.1%)。但是关键气候因子在不同森林类型间存在一定差异,其中降水是影响贵州灌丛和常绿阔叶林NEP的第一关键气候因子,而气温是影响贵州针叶林NEP的第一关键气候因子。(4)从空间分布的影响分析来看,气候环境因素对固碳功能的影响较为复杂,其中气温、辐射、高程是对西南林区NEP空间分异解释力最强的前三个因子。但是在贵州和重庆林区,各因子对NEP解释力均明显偏弱(q值<0.1),表明气候环境因素对林区NEP空间分布驱动机制更为复杂。此外,各因子间对林区NEP空间分布变化存在交互作用,分别属于双因子增强或非线性增强作用。其中最大交互影响力分别为,气温∩日照(q值=0.33)、辐射∩蒸散(q值=0.31),气温∩辐射(q值=0.29),表明这些因子交互作用对西南林区NEP空间分布的影响占主导地位。本研究结果将有助于揭示森林NEP对气候环境变化的响应机制,为西南林区碳中和研究提供基础数据支持。
基金Under the auspices of Asia Pacific Network for Global Change Research(APN)Global Change Fund Project(No.ARCP2015-03CMY-Li)+2 种基金National Natural Science Foundation of China(No.41271361,41501575)National Key Research and Development Project(No.2018YFD0800201)Key Project of Chinese National Programs for Fundamental Research and Development(No.2010CB950702)
文摘Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.
基金supported by the National Natural Science Fundation of China(No.41571175,31661143028)the special funds for basic research and operation from the Chinese Academy of Meteorological Science(2017Y003)。
文摘Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about the key factors controlling the variability of forest NPP.Methods:This paper established a statistics-based multiple regression model to estimate forest NPP,using the observed NPP,meteorological and remote sensing data in five major forest ecosystems.The fluctuation values of NPP and environment variables were extracted to identify the key variables influencing the variation of forest NPP by correlation analysis.Results:The long-term trends and annual fluctuations of forest NPP between 2000 and 2018 were examined.The results showed a significant increase in forest NPP for all five forest ecosystems,with an average rise of 5.2 gC·m-2·year-1 over China.Over 90%of the forest area had an increasing NPP range of 0-161 gC·m-2·year-1.Forest NPP had an interannual fluctuation of 50-269 gC.m-2·year-1 for the five major forest ecosystems.The evergreen broadleaf forest had the largest fluctuation.The variability in forest NPP was caused mainly by variations in precipitation,then by temperature fluctuations.Conclusions:All five forest ecosystems in China exhibited a significant increasing NPP along with annual fluctuations evidently during 2000-2018.The variations in China’s forest NPP were controlled mainly by changes in precipitation.
基金supported by the National Natu-ral Science Foundation of China (No.40771172 No. 40901223)+1 种基金the Innovative Program of the Chinese Academy of Sciences (No. kzcx2-yw-308)the State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (SKLLQG0821)
文摘Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.
文摘The paper deals with the biomass and productivity of sal (SF) and miscellaneous forests (MF) of Satpura plateau (Madhya Pradesh) India. These forest types were divided into four sites namely open miscellaneous (OMF, site-I), closed miscellaneous (CMF, site-II), open sal (OSF, site-III) and closed sal (CSF, site-IV). The degree of disturbance followed the order: III (0.70) 109 (III) > 79.80 (I) > 52.69 (II), while for NPPherb, the order of importance was, 109.50 (IV) > 73.27 (I) > (II), 71.75 (III) > 55.71 (II). NPPtotal was highest for closed forest stands than of the open ones. NPPteak was lower for high-disturbed site than of the less disturbed site. Photosynthetic/ non - photosynthetic ratio follows the order: 0.067 (II) > 0.030 (III) > 0.026 (IV) > 0.018 (I). Open forests showed lower values for this ratio. NEP was higher for SF than of the MF. Further closed forests showed higher values of NEP. OSF showed lower values of NEPsal than of the CSF. Disturbances in open forests not only reduced stand biomass of tree species, dominant species in particular, but also declined the tree productivity. So, gap filling plantation in side the forest is suggested to improve the productivity of open forests.
基金Under the auspices of National Natural Science Foundation of China(No.41401221,41271500,41201496)Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research(Jiangxi Normal University),Ministry of Education,China(No.PK2014002)
文摘As an important product of Moderate Resolution Imaging Spectroradiometer(MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity(GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance(EC) technique, few have comprehensively validated the performance of MODIS estimates(Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest(EBF), evergreen needleleaf forest(ENF), deciduous broadleaf forest(DBF), and mixed forest(MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.
文摘This study aims at quantifying the most important ecosystem services: forage production, timber production and carbon sequestration provided by Pterocarpus lucens to local communities of Ferlo Biosphere Reserve. The results suggested that the ecological structure of Pterocarpus lucens revealed a bell-shaped form with left dissymmetric distribution indicating a predominance of individuals with small circumference and height. A regression using the software Minitab 16, with circumference and the height as explanatory variables, has allowed a development of predictive models for the estimation of the produced forage and the quantification of the timber supplied by one of the most used plant species in Sahelian pastures. Forage production of Pterocarpus lucens was estimated at 178 kg DM/ha. This large value of forage showed the predominance of this species in animal feed in the Sahel. The quantity of wood produced was 545 kg DM/ha while the quantity of above ground sequestered carbon was 325.35 kg of C/ha. Those estimations are interesting in the implementation context of the Ferlo Biosphere Reserve which aims at matching the productive capacity of ecosystems with the needs of local communities.
基金a Grant-in-Aid for Young Scientists B (No. 16 K18715)a JSPS Overseas Research Fellowship (No. 201860500) from the Japan Society for the Promotion of Science。
文摘Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diversity are expected to accumulate over time. Here, I present findings from a 31-year-old tree diversity experiment(as of2018) in Japan.Results: I find that the net diversity effect on stand biomass increased linearly through time. The species mixture achieved 64% greater biomass than the average monoculture biomass 31 years after planting. The complementarity effect was positive and increased exponentially with time. The selection effect was negative and decreased exponentially with time. In the early stages(≤ 3 years), the positive complementarity effect was explained by enhanced growths of early-and mid-successional species in the mixture. Later on(≥ 15 years), it was explained by their increased survival rates owing to vertical spatial partitioning — i.e. alleviation of self-thinning via canopy stratification. The negative selection effect resulted from suppressed growths of late-successional species in the bottom layer.Conclusions: The experiment provides pioneering evidence that the positive impacts of diversity-driven spatial partitioning on forest biomass can accumulate over multiple decades. The results indicate that forest biomass production and carbon sequestration can be enhanced by multispecies afforestation strategies.
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C77)the PhD Programs Foundation of Xinjiang University(BS202105).
文摘The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems.However,the trade-offs and synergies between ecosystem services(ESs)have not been thoroughly examined.This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs.Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)and Revised Wind Erosion Equation(RWEQ)using land use/land cover(LULC),climate,vegetation,soil,and hydrological data,we quantified the spatiotemporal changes in the five principal ESs(carbon storage,water yield,food production,wind and sand prevention,and habitat quality)of the watershed from 1995 to 2020.Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs.The findings reveal that water yield,carbon storage,and habitat quality exhibited relatively high levels in the upstream,while food production and wind and sand prevention dominated the midstream and downstream,respectively.Furthermore,carbon storage,food production,wind and sand prevention,and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020.Specifically,carbon storage,wind and sand prevention,and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream.Food production in the midstream showed a continuously increasing trend during the study period.Trade-off relationships were identified between water yield and wind and sand prevention,water yield and carbon storage,food production and water yield,and habitat quality and wind and sand prevention.Prominent temporal and spatial synergistic relationships were observed between different ESs,notably between carbon storage and habitat quality,carbon storage and food production,food production and wind and sand prevention,and food production and habitat quality.Water resources emerged as a decisive factor for the sustainable development of the basin,thus highlighting the intricate trade-offs and synergies between water yield and the other four services,particularly the relationship with food production,which warrants further attention.This research is of great significance for the protection and sustainable development of river basins in arid areas.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.