期刊文献+
共找到13,266篇文章
< 1 2 250 >
每页显示 20 50 100
Application of the N + 2 Transversal Network Method to the Study of a Coupled Resonator Filter
1
作者 Charmolavy Goslavy Lionel Nkouka Moukengue Conrad Onésime Oboulhas Tsahat +2 位作者 Haroun Abba Labane Barol Mafouna Kiminou Achille Makouka 《Open Journal of Applied Sciences》 2024年第6期1412-1424,共13页
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f... This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros. 展开更多
关键词 Resonator Filter Coupling Matrix Transmission Zero Transversal network method
在线阅读 下载PDF
Analysis of the Temperature Characteristics of High-speed Train Bearings Based on a Dynamics Model and Thermal Network Method 被引量:5
2
作者 Baosen Wang Yongqiang Liu +1 位作者 Bin Zhang Wenqing Huai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期351-363,共13页
High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in... High-speed trains often use temperature sensors to monitor the motion state of bearings.However,the temperature of bearings can be affected by factors such as weather and faults.Therefore,it is necessary to analyze in detail the relationship between the bearing temperature and influencing factors.In this study,a dynamics model of the axle box bearing of high-speed trains is established.The model can obtain the contact force between the rollers and raceway and its change law when the bearing contains outer-ring,inner-ring,and rolling-element faults.Based on the model,a thermal network method is introduced to study the temperature field distribution of the axle box bearings of high-speed trains.In this model,the heat generation,conduction,and dispersion of the isothermal nodes can be solved.The results show that the temperature of the contact point between the outer-ring raceway and rolling-elements is the highest.The relationships between the node temperature and the speed,fault type,and fault size are analyzed,finding that the higher the speed,the higher the node temperature.Under different fault types,the node temperature first increases and then decreases as the fault size increases.The effectiveness of the model is demonstrated using the actual temperature data of a high-speed train.This study proposes a thermal network model that can predict the temperature of each component of the bearings on a high-speed train under various speed and fault conditions. 展开更多
关键词 High-speed train Axle box bearing Temperature characteristics Thermal network method
在线阅读 下载PDF
Recursion-transform method and potential formulae of the m×n cobweb and fan networks 被引量:11
3
作者 谭志中 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期82-90,共9页
In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ... In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms. 展开更多
关键词 recursion-transform method network model potential formula exact solution
在线阅读 下载PDF
Simultaneous Determination of Iron and Manganese in Water Using Artificial Neural Network Catalytic Spectrophotometric Method 被引量:4
4
作者 JI Hongwei XU Yan +2 位作者 LI Shuang XIN Huizhen CAO Hengxia 《Journal of Ocean University of China》 SCIE CAS 2012年第3期323-330,共8页
A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is est... A new analytical method using Back-Propagation (BP) artificial neural network and kinetic spectrophotometry for simultaneous determination of iron and magnesium in tap water, the Yellow River water and seawater is established. By conditional experiments, the optimum analytical conditions and parameters are obtained. Levenberg-Marquart (L-M) algorithm is used for calculation in BP neural network. The topological structure of three-layer BP ANN network architecture is chosen as 15-16-2 (nodes). The initial value of gradient coefficient μ is fixed at 0.001 and the increase factor and reduction factor of μ take the default values of the system. The data are processed by computers with our own programs written in MATLAB 7.0. The relative standard deviation of the calculated results for iron and manganese is 2.30% and 2.67% respectively. The results of standard addition method show that for the tap water, the recoveries of iron and manganese are in the ranges of 98.0%-104.3% and 96.5%-104.5%, and the RSD is in the range of 0.23%-0.98%; for the Yellow River water (Lijin district of Shandong Province), the recoveries of iron and manganese are in the ranges of 96.0%-101.0% and 98.7%-104.2%, and the RSD is in the range of 0.13%-2.52%; for the seawater in Qingdao offshore, the recoveries of iron and manganese are in the ranges of 95.3%-104.8% and 95.3%-104.7%, and the RSD is in the range of 0.14%-2.66%. It is found that 21 common cations and anions do not interfere with the determination of iron and manganese under the optimum experimental conditions. This method exhibits good reproducibility and high accuracy in the determination of iron and manganese and can be used for the simultaneous determination of iron and manganese in tap water and natural water. By using the established ANN- catalytic spectrophotometric method, the iron and manganese concentrations of the surface seawater at 11 sites in Qingdao offshore are determined and the level distribution maps of iron and manganese are drawn. 展开更多
关键词 artificial neural network simultaneous determination kinetic spectrophotometric method iron MANGANESE
在线阅读 下载PDF
Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural Network Method 被引量:1
5
作者 Xueye WANG and Huang SONG (Department of Chemistry, Xiangtan University, Xiangtan 411105, China) Guanzhou QIU and Dianzuo WANG (Department of Mineral Engineering, Central South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期435-438,共4页
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu... Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides. 展开更多
关键词 Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural network method
在线阅读 下载PDF
The application of neural networks to comprehensive prediction by seismology prediction method 被引量:1
6
作者 王炜 吴耿锋 宋先月 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期210-215,共6页
BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is ca... BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction. 展开更多
关键词 BP neural networks nonlinear relationship seismological method of earthquake prediction comprehensive earthquake prediction
在线阅读 下载PDF
An Artificial Neural Network-Based Response Surface Method for Reliability Analyses of c-φ Slopes with Spatially Variable Soil 被引量:4
7
作者 舒苏荀 龚文惠 《China Ocean Engineering》 SCIE EI CSCD 2016年第1期113-122,共10页
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s... This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses. 展开更多
关键词 slope reliability spatial variability artificial neural network Latin hypercube sampling random finite element method
在线阅读 下载PDF
Estimation of Tsunami Run-up Height by Three Artificial Neural Network Methods
8
作者 Nuray GEDIK Emel IRTEM +1 位作者 H.Kerem CIGIZOGLU M.Sedat KABDASLI 《China Ocean Engineering》 SCIE EI 2009年第1期85-94,共10页
Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed ... Tsunami ran-up height is a significant parameter for dimensions of coastal structures. In the present study, tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models, i.e. Feed Forward Back Propagation (FFBP), Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN). As the input for the ANN configuration, the wave height (H) values are employed. It is shown that the tsunami ran-up height values are closely approximated with all of the applied ANN methods. The ANN estimations are slightly superior to those of the empirical equation. It can be seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments. The results also prove that the available experiment data set can be extended with ANN simulations. This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons. 展开更多
关键词 tsanami run-up height artificial neural network methods EXPERIMENTS
在线阅读 下载PDF
Linearization Learning Method of BP Neural Networks 被引量:4
9
作者 Zhou Shaoqian Ding Lixin +1 位作者 Zhang Jian Tang Xinhua 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期37-41,共5页
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ... Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically. 展开更多
关键词 BP neural networks activation function linearization method
在线阅读 下载PDF
A local fuzzy method based on “p-strong” community for detecting communities in networks 被引量:1
10
作者 沈毅 任刚 +1 位作者 刘洋 徐家丽 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期589-595,共7页
In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglo... In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity. 展开更多
关键词 networkS local fuzzy method overlapping communities fuzzy coefficients
在线阅读 下载PDF
Reinforcing a Dangerous Rock Mass Using the Flexible Network Method
11
作者 Yang Wendong Xie Quanmin Xia Yuanyou Li Xinping 《Journal of China University of Geosciences》 SCIE CSCD 2005年第4期354-358,共5页
Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blast... Because the main failure type of a dangerous rock mass is collapse, the treatment of such a mass should focus on controlling collapse failure. When treating dangerous rock masses, disturbing the mass (e. g. by blasting) needs to be avoided, as this new damage could cause collapse. So the self-bearing capacity of the mountain mass must be used to treat the dangerous rock mass. This article is based on a practical example of the control of a dangerous rock mass at Banyan Mountain, Huangshi, Hubei Province. On the basis of an analysis of damage mechanism and the stability of the dangerous rock mass, a flexible network reinforcement method was designed to prevent the collapse of the rock mass. The deformations of section Ⅱ w of the dangerous rock mass before and after the flexible network reinforcement were calculated using the two-dimensional finite element method. The results show that the maximum deformation reduced by 55 % after the application of the flexible network reinforcement, from 45.99 to 20.75 ram, which demonstrates that the flexible network method is effective, and can provide some scientific basis for the treatment of dangerous rock masses. 展开更多
关键词 dangerous rock mass flexible network reinforcement method finite element analysis.
在线阅读 下载PDF
Online Gradient Methods with a Punishing Term for Neural Networks 被引量:2
12
作者 孔俊 吴微 《Northeastern Mathematical Journal》 CSCD 2001年第3期371-378,共8页
Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the impl... Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided. 展开更多
关键词 feedforward neural network online gradient method CONVERGENCE BOUNDEDNESS punishing term
在线阅读 下载PDF
A Study on Priority Based ZigBee Network Performance Analysis with Tree Routing Method 被引量:1
13
作者 Nazrul Islam Md. Jaminul Haque Biddut +1 位作者 Asma Islam Swapna Mehedy Hasan Rafsan Jany 《Journal of Computer and Communications》 2015年第8期1-10,共10页
The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ... The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ZigBee devices facilitate numerous applications such as pervasive computing, security monitoring and control. ZigBee end devices collect sensing data and send them to ZigBee Coordinator. The Coordinator processes end device requests. The effect of a large number of random unsynchronized requests may degrade the overall network performance. An effective technique is particularly needed for synchronizing available node’s request processing to design a reliable ZigBee network. In this paper, region based priority mechanism is implemented to synchronize request with Tree Routing Method. Riverbed is used to simulate and analyze overall ZigBee network performance. The results show that the performance of the overall priority based ZigBee network model is better than without a priority based model. This research paves the way for further designing and modeling a large scale ZigBee network. 展开更多
关键词 WSN ZigBee network TREE ROUTING method Performance Analysis RIVERBED
在线阅读 下载PDF
Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method
14
作者 NIE Xiaobo LI Haibin 《Journal of Donghua University(English Edition)》 CAS 2021年第1期51-56,共6页
Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DN... Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DNN)is proposed.Firstly,SVM with good small sample learning ability is used to train small sample data,fit structural performance functions and establish regular integration regions.Secondly,DNN is approximated the integral function to achieve multiple integration in the integration region.Finally,structural reliability was obtained by DNN.Numerical examples are investigated to demonstrate the effectiveness of the present method,which provides a feasible way for the structural reliability analysis. 展开更多
关键词 support vector machine(SVM) neural network direct integration method structural reliability small sample data performance function
在线阅读 下载PDF
Optimization of control of network with inverse method of deep foundation
15
作者 谢鸣 姜庆远 谢爽 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第4期387-390,共4页
Following the theory of CPM/PERT, and using the inverse method of deep foundation in tall buildings, how to control a project with network and how to optimize this network by computer are discussed, and by comparing a... Following the theory of CPM/PERT, and using the inverse method of deep foundation in tall buildings, how to control a project with network and how to optimize this network by computer are discussed, and by comparing and analyzing the working schemes and taking into account time and economy, "the means of the lowest cost accelerating(MLCA)" is used to make optimal computation for critical paths and take into consideration the influence of cold weather on construction and foundation treatment etc, so that the best work can be done at the lowest cost. 展开更多
关键词 network INVERSE method DEEP FOUNDATION OPTIMIZATION
在线阅读 下载PDF
Artificial Neural Network Method Based on Expert Knowledge and Its Application to Quantitative Identification of Potential Seismic Sources
16
作者 Hu Yinlei and Zhang YumingInstitute of Geology,SSB,Beijing 100029,China 《Earthquake Research in China》 1997年第2期64-72,共9页
In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule sampl... In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized. 展开更多
关键词 Artificial Neural network method Based on Expert Knowledge and Its Application to Quantitative Identification of Potential Seismic Sources LENGTH
在线阅读 下载PDF
TIME SERIES NEURAL NETWORK FORECASTING METHODS
17
作者 文新辉 陈开周 《Journal of Electronics(China)》 1995年第1期1-8,共8页
This paper has discussed the possibility and key problem to construct the neural network time series model, and three time series neural network forecasting methods has been proposed, i. e. a neural network nonlinear ... This paper has discussed the possibility and key problem to construct the neural network time series model, and three time series neural network forecasting methods has been proposed, i. e. a neural network nonlinear time series model, a neural network multi-dimension time series model and a neural network combining predictive model. These three methods are applied to real problems. The results show that these methods are better than the traditional one. Furthermore, the neural network methods are compared with the traditional method, and the constructed model of intellectual information forecasting system is given. 展开更多
关键词 INFORMATION THEORY INFORMATION PROCESSING NEURAL network forecasting method
在线阅读 下载PDF
A Study on the Convergence of Gradient Method with Momentum for Sigma-Pi-Sigma Neural Networks 被引量:1
18
作者 Xun Zhang Naimin Zhang 《Journal of Applied Mathematics and Physics》 2018年第4期880-887,共8页
In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficien... In this paper, a gradient method with momentum for sigma-pi-sigma neural networks (SPSNN) is considered in order to accelerate the convergence of the learning procedure for the network weights. The momentum coefficient is chosen in an adaptive manner, and the corresponding weak convergence and strong convergence results are proved. 展开更多
关键词 Sigma-Pi-Sigma NEURAL network MOMENTUM TERM GRADIENT method CONVERGENCE
在线阅读 下载PDF
A Method for Detecting Wide-scale Network Traffic Anomalies
19
作者 Wang Minghua(National Computer Network Emergency Response Technical Team/Coordination Center(CNCERT/CC),Beijing 100029,China) 《ZTE Communications》 2007年第4期19-23,共5页
Network traffic anomalies refer to the traffic changed abnormally and obviously.Local events such as temporary network congestion,Distributed Denial of Service(DDoS)attack and large-scale scan,or global events such as... Network traffic anomalies refer to the traffic changed abnormally and obviously.Local events such as temporary network congestion,Distributed Denial of Service(DDoS)attack and large-scale scan,or global events such as abnormal network routing,can cause network anomalies.Network anomaly detection and analysis are very important to Computer Security Incident Response Teams(CSIRT).But wide-scale traffic anomaly detection requires extracting anomalous modes from large amounts of high-dimensional noise-rich data,and interpreting the modes;so,it is very difficult.This paper proposes a general method based on Principle Component Analysis(PCA)to analyze network anomalies.This method divides the traffic matrix into normal and anomalous subspaces,maps traffic vectors into the normal subspace,gets the distance from detected vector to average normal vector,and detects anomalies based on that distance. 展开更多
关键词 A method for Detecting Wide-scale network Traffic Anomalies DDOS Security PCA
在线阅读 下载PDF
Comparative study on identification methods of pipe roughness coefficients in water networks 被引量:2
20
作者 刘永鑫 邹平华 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第6期133-138,共6页
In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can n... In this paper,we improve object functions and constraint conditions of genetic algorithms (GAs) applied in PRCs identification of water networks.This identification method can increase calculation efficiency,but can not solve an identification problem with infinitely many solutions well.Then we propose PRCs identification based on the minimal norm method,which satisfies observability conditions and has advantages of high computing efficiency and short time consumption.The two identification methods are applied in a water network,and their identification results are compared under the same conditions.From the results,we know that PRCs identification based on the minimal norm method has advantages of higher computing efficiency,shorter time consumption and higher precision. 展开更多
关键词 PRCs water networks IDENTIFICATION improved GA minimal norm method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部