期刊文献+
共找到809篇文章
< 1 2 41 >
每页显示 20 50 100
MMH-FE:AMulti-Precision and Multi-Sourced Heterogeneous Privacy-Preserving Neural Network Training Based on Functional Encryption
1
作者 Hao Li Kuan Shao +2 位作者 Xin Wang Mufeng Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第3期5387-5405,共19页
Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.P... Due to the development of cloud computing and machine learning,users can upload their data to the cloud for machine learning model training.However,dishonest clouds may infer user data,resulting in user data leakage.Previous schemes have achieved secure outsourced computing,but they suffer from low computational accuracy,difficult-to-handle heterogeneous distribution of data from multiple sources,and high computational cost,which result in extremely poor user experience and expensive cloud computing costs.To address the above problems,we propose amulti-precision,multi-sourced,andmulti-key outsourcing neural network training scheme.Firstly,we design a multi-precision functional encryption computation based on Euclidean division.Second,we design the outsourcing model training algorithm based on a multi-precision functional encryption with multi-sourced heterogeneity.Finally,we conduct experiments on three datasets.The results indicate that our framework achieves an accuracy improvement of 6%to 30%.Additionally,it offers a memory space optimization of 1.0×2^(24) times compared to the previous best approach. 展开更多
关键词 functional encryption multi-sourced heterogeneous data privacy preservation neural networks
在线阅读 下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
2
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
Optimizing Data Collection Path in Sensor Networks with Mobile Elements
3
作者 Liang He Zhi Chen Jing-Dong Xu 《International Journal of Automation and computing》 EI 2011年第1期69-77,共9页
Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large dat... Exploiting mobile elements (MEs) to accomplish data collection in wireless sensor networks (WSNs) can improve the energy efficiency of sensor nodes, and prolong network lifetime. However, it will lead to large data collection latency for the network, which is unacceptable for data-critical applications. In this paper, we address this problem by minimizing the traveling length of MEs. Our methods mainly consist of two steps: we first construct a virtual grid network and select the minimal stop point set (SPS) from it; then, we make optimal scheduling for the MEs based on the SPS in order to minimize their traveling length. Different implementations of genetic algorithm (GA) are used to solve the problem. Our methods are evaluated by extensive simulations. The results show that these methods can greatly reduce the traveling length of MEs, and decrease the data collection latency. 展开更多
关键词 Mobile element data collection genetic algorithm sensor network data latency.
在线阅读 下载PDF
Rough set and radial basis function neural network based insulation data mining fault diagnosis for power transformer
4
作者 董立新 肖登明 刘奕路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期263-268,共6页
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input... Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing. 展开更多
关键词 rough set (RS) radial basis function neural network (RBFNN) data mining fault diagnosis
在线阅读 下载PDF
INTERNET TRAFFIC DATA FLOW FORECAST BY RBF NEURAL NETWORK BASED ON PHASE SPACE RECONSTRUCTION 被引量:4
5
作者 陆锦军 王执铨 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期316-322,共7页
Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a n... Characteristics of the Internet traffic data flow are studied based on the chaos theory. A phase space that is isometric with the network dynamic system is reconstructed by using the single variable time series of a network flow. Some parameters, such as the correlative dimension and the Lyapunov exponent are calculated, and the chaos characteristic is proved to exist in Internet traffic data flows. A neural network model is construct- ed based on radial basis function (RBF) to forecast actual Internet traffic data flow. Simulation results show that, compared with other forecasts of the forward-feedback neural network, the forecast of the RBF neural network based on the chaos theory has faster learning capacity and higher forecasting accuracy. 展开更多
关键词 chaos theory phase space reeonstruction Lyapunov exponent tnternet data flow radial basis function neural network
在线阅读 下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
6
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
在线阅读 下载PDF
Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays 被引量:4
7
作者 Chengyu Xie Hoang Nguyen +1 位作者 Yosoon Choi Danial Jahed Armaghani 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期34-51,共18页
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures... Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy. 展开更多
关键词 Diaphragm wall deflection Braced excavation Finite element analysis Clays Meta-heuristic algorithms functional linked neural network
在线阅读 下载PDF
Understanding biological functions through molecular networks 被引量:7
8
作者 Han,JD 《Cell Research》 SCIE CAS CSCD 2008年第2期224-237,共14页
The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approa... The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future. 展开更多
关键词 network data integration modularity molecular function genetic variation
在线阅读 下载PDF
Hash-area-based data dissemination protocol in wireless sensor networks 被引量:1
9
作者 王田 王国军 +1 位作者 过敏意 贾维嘉 《Journal of Central South University of Technology》 EI 2008年第3期392-398,共7页
HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The se... HashQuery,a Hash-area-based data dissemination protocol,was designed in wireless sensor networks. Using a Hash function which uses time as the key,both mobile sinks and sensors can determine the same Hash area. The sensors can send the information about the events that they monitor to the Hash area and the mobile sinks need only to query that area instead of flooding among the whole network,and thus much energy can be saved. In addition,the location of the Hash area changes over time so as to balance the energy consumption in the whole network. Theoretical analysis shows that the proposed protocol can be energy-efficient and simulation studies further show that when there are 5 sources and 5 sinks in the network,it can save at least 50% energy compared with the existing two-tier data dissemination(TTDD) protocol,especially in large-scale wireless sensor networks. 展开更多
关键词 wireless sensor networks Hash function data dissemination query processing mobile sinks
在线阅读 下载PDF
Application of Conditional Deep Generative Networks (CGAN) in empirical bayes estimation of road crash risk and identifying crash hotspots
10
作者 Mohammad Zarei Bruce Hellinga Pedram Izadpanah 《International Journal of Transportation Science and Technology》 2024年第1期258-269,共12页
The conditional generative adversarial network(CGAN)is used in this paper for empirical Bayes(EB)analysis of road crash hotspots.EB is a well-known method for estimating the expected crash frequency of sites(e.g.road ... The conditional generative adversarial network(CGAN)is used in this paper for empirical Bayes(EB)analysis of road crash hotspots.EB is a well-known method for estimating the expected crash frequency of sites(e.g.road segments,intersections)and then prioritising these sites to identify a subset of high priority sites(e.g.hotspots)for additional safety audits/improvements.In contrast to the conventional EB approach,which employs a statis tical model such as the negative binomial model(NB-EB)to model crash frequency data,the recently developed CGAN-EB approach uses a conditional generative adversarial net work,a form of deep neural network,that can model any form of distributions of the crash frequency data.Previous research has shown that the CGAN-EB performs as well as or bet ter than NB-EB,however that work considered only a small range of crash data character istics and did not examine the spatial and temporal transferability.In this paper a series of simulation experiments are devised and carried out to assess the CGAN-EB performance across a wide range of conditions and compares it to the NB-EB.The simulation results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model(i.e.data conform to the assumptions of the NB model)and outperforms NB-EB in experi ments reflecting conditions frequently encountered in practice(i.e.low sample mean crash rates,and when crash frequency does not follow a log-linear relationship with covariates).Also,temporal and spatial transferability of both approaches were evaluated using field data and both CGAN-EB and NB-EB approaches were found to have similar performance. 展开更多
关键词 Conditional Generative Adversarial networks(CGAN) Hotspot identification Empirical Bayes method Safety performance function Negative binomial model network screening Crash data simulation
在线阅读 下载PDF
Application of FCM Algorithm Combined with Artificial Neural Network in TBM Operation Data
11
作者 Jingyi Fang Xueguan Song +1 位作者 Nianmin Yao Maolin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期397-417,共21页
Fuzzy clustering theory is widely used in data mining of full-face tunnel boring machine.However,the traditional fuzzy clustering algorithm based on objective function is difficult to effectively cluster functional da... Fuzzy clustering theory is widely used in data mining of full-face tunnel boring machine.However,the traditional fuzzy clustering algorithm based on objective function is difficult to effectively cluster functional data.We propose a new Fuzzy clustering algorithm,namely FCM-ANN algorithm.The algorithm replaces the clustering prototype of the FCM algorithm with the predicted value of the artificial neural network.This makes the algorithm not only satisfy the clustering based on the traditional similarity criterion,but also can effectively cluster the functional data.In this paper,we first use the t-test as an evaluation index and apply the FCM-ANN algorithm to the synthetic datasets for validity testing.Then the algorithm is applied to TBM operation data and combined with the crossvalidation method to predict the tunneling speed.The predicted results are evaluated by RMSE and R^(2).According to the experimental results on the synthetic datasets,we obtain the relationship among the membership threshold,the number of samples,the number of attributes and the noise.Accordingly,the datasets can be effectively adjusted.Applying the FCM-ANN algorithm to the TBM operation data can accurately predict the tunneling speed.The FCM-ANN algorithm has improved the traditional fuzzy clustering algorithm,which can be used not only for the prediction of tunneling speed of TBM but also for clustering or prediction of other functional data. 展开更多
关键词 data clustering FCM artificial neural network functional data TBM
在线阅读 下载PDF
Research on the Method of Implementing Named Data Network Interconnection Based on IP Network
12
作者 Yabin Xu Lufa Qin Xiaowei Xu 《Journal of Cyber Security》 2022年第1期41-55,共15页
In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.F... In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy. 展开更多
关键词 NDN IP network named data network interconnection adaptive probability forwarding strategy link cost function forwarding strategy
在线阅读 下载PDF
CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions
13
作者 Mohammad Zarei Bruce Hellinga Pedram Izadpanah 《International Journal of Transportation Science and Technology》 2023年第3期753-764,共12页
The empirical Bayes(EB)method based on parametric statistical models such as the negative binomial(NB)has been widely used for ranking sites in the road network safety screening process.In this paper a novel non-param... The empirical Bayes(EB)method based on parametric statistical models such as the negative binomial(NB)has been widely used for ranking sites in the road network safety screening process.In this paper a novel non-parametric EB method for modeling crash frequency data based on Conditional Generative Adversarial Networks(CGAN)is proposed and evaluated over a real-world crash data set.Unlike parametric approaches,there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB and they are able to model any types of distributions.The proposed methodology is applied to real-world and simulated crash data sets.The performance of CGAN-EB in terms of model fit,predictive performance and network screening outcomes is compared with the conventional approach(NB-EB)as a benchmark.The results indicate that the proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and hotspot identification tests. 展开更多
关键词 Crash predictive model Conditional Generative Adversarial networks(CGAN) Crash data simulation Empirical Bayes method Safety performance function
在线阅读 下载PDF
Improving Land Resource Evaluation Using Fuzzy Neural Network Ensembles 被引量:11
14
作者 XUE Yue-Ju HU Yue-Ming +3 位作者 LIU Shu-Guang YANG Jing-Feng CHEN Qi-Chang BAO Shi-Tai 《Pedosphere》 SCIE CAS CSCD 2007年第4期429-435,共7页
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource exper... Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. 展开更多
关键词 back propagation neural network (BPNN) data types fuzzy neural network ensembles land resource evaluation radial basis function neural network (RBFNN)
在线阅读 下载PDF
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control 被引量:4
15
作者 Mao-Kuan Zheng Xin-Guo Ming +1 位作者 Xian-Yu Zhang Guo-Ming Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1216-1226,共11页
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and... Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian net- work of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly pro- portionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The inte- gration ofbigdata analytics and BN method offers a whole new perspective in manufacturing quality control. 展开更多
关键词 Bayesian network Big data analytics MAPREDUCE Quality control
在线阅读 下载PDF
Calculation method of ship collision force on bridge using artificial neural network 被引量:4
16
作者 Wei FAN Wan-cheng YUAN Qi-wu FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期614-623,共10页
Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent st... Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software. 展开更多
关键词 Ship-bridge collision force Finite element method (FEM) Artificial neural network (ANN) Radial basis function neural network (RBFNN)
在线阅读 下载PDF
Semantics Analytics of Origin-Destination Flows from Crowd Sensed Big Data 被引量:1
17
作者 Ning Cao Shengfang Li +6 位作者 Keyong Shen Sheng Bin Gengxin Sun Dongjie Zhu Xiuli Han Guangsheng Cao Abraham Campbell 《Computers, Materials & Continua》 SCIE EI 2019年第7期227-241,共15页
Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used ... Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human activity.Taxi-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine the semantics of OD flows.In this paper,we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China.The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows.Then based on a novel complex network model,a semantics mining method of OD flows is proposed through compounding Points of Interests(POI)network and public transport network to the OD flows network.The propose method would offer a novel way to predict the location characteristic and future traffic conditions accurately. 展开更多
关键词 Origin-destination(OD)flows semantics analytics complex network big data analysis
在线阅读 下载PDF
Wavelet Transform for Image Compression Using Multi-Resolution Analytics: Application to Wireless Sensors Data
18
作者 Wasiu Opeyemi Oduola Cajetan M. Akujuobi 《Advances in Pure Mathematics》 2017年第8期430-440,共11页
The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins includ... The aggregation of data in recent years has been expanding at an exponential rate. There are various data generating sources that are responsible for such a tremendous data growth rate. Some of the data origins include data from the various social media, footages from video cameras, wireless and wired sensor network measurements, data from the stock markets and other financial transaction data, supermarket transaction data and so on. The aforementioned data may be high dimensional and big in Volume, Value, Velocity, Variety, and Veracity. Hence one of the crucial challenges is the storage, processing and extraction of relevant information from the data. In the special case of image data, the technique of image compressions may be employed in reducing the dimension and volume of the data to ensure it is convenient for processing and analysis. In this work, we examine a proof-of-concept multiresolution analytics that uses wavelet transforms, that is one popular mathematical and analytical framework employed in signal processing and representations, and we study its applications to the area of compressing image data in wireless sensor networks. The proposed approach consists of the applications of wavelet transforms, threshold detections, quantization data encoding and ultimately apply the inverse transforms. The work specifically focuses on multi-resolution analysis with wavelet transforms by comparing 3 wavelets at the 5 decomposition levels. Simulation results are provided to demonstrate the effectiveness of the methodology. 展开更多
关键词 WAVELETS MULTI-RESOLUTION Analysis Image Compressions WIRELESS Sensor networks MATHEMATICAL data analytics
在线阅读 下载PDF
Structural Reliability Analysis Based on Support Vector Machine and Dual Neural Network Direct Integration Method
19
作者 NIE Xiaobo LI Haibin 《Journal of Donghua University(English Edition)》 CAS 2021年第1期51-56,共6页
Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DN... Aiming at the reliability analysis of small sample data or implicit structural function,a novel structural reliability analysis model based on support vector machine(SVM)and neural network direct integration method(DNN)is proposed.Firstly,SVM with good small sample learning ability is used to train small sample data,fit structural performance functions and establish regular integration regions.Secondly,DNN is approximated the integral function to achieve multiple integration in the integration region.Finally,structural reliability was obtained by DNN.Numerical examples are investigated to demonstrate the effectiveness of the present method,which provides a feasible way for the structural reliability analysis. 展开更多
关键词 support vector machine(SVM) neural network direct integration method structural reliability small sample data performance function
在线阅读 下载PDF
基于一致损失生成对抗网络的冷水机组故障诊断
20
作者 高学金 吴浩宁 +1 位作者 高慧慧 齐咏生 《仪器仪表学报》 北大核心 2025年第1期285-297,共13页
冷水机组是供暖通风与空气调节系统的重要组成部分,当冷水机组发生故障时将造成能源浪费甚至安全事故。因此,针对冷水机组的故障诊断对于暖通风与空气调节等系统至关重要。基于数据驱动的故障诊断方法依赖大量历史数据,但带标签的故障... 冷水机组是供暖通风与空气调节系统的重要组成部分,当冷水机组发生故障时将造成能源浪费甚至安全事故。因此,针对冷水机组的故障诊断对于暖通风与空气调节等系统至关重要。基于数据驱动的故障诊断方法依赖大量历史数据,但带标签的故障数据往往难以收集,导致模型的诊断准确率下降。为此,提出了一种基于一致损失生成对抗网络(CLGAN)的故障诊断方法。首先,利用少量带标签样本和大量无标签样本训练CLGAN,并生成故障数据;然后,利用生成数据与历史数据构建一个包含各类故障的平衡数据集;最后,利用该数据集训练故障分类器并对冷水机组进行实时诊断。CLGAN通过在判别器中引入一致性损失函数,能够有效利用无标签数据辅助模型训练,提升了数据利用率。同时,CLGAN迫使生成器在多个尺度上满足判别器的要求,这种多维度的反馈机制使得模型在面对扰动时,依然能生成高质量的样本,进而提高故障诊断的准确性和鲁棒性。基于ASHRAE和HY-31C数据集的实验结果表明,在各类别仅有5个带标签样本的情况下,CLGAN分别获得了92.8%和95.9%的故障诊断准确率,展现了良好的故障诊断性能。此外,在噪声和跨工况实验中,CLGAN相比于其他对比方法也展现出了良好的鲁棒性和泛化性。 展开更多
关键词 故障诊断 生成对抗网络 冷水机组 一致损失函数 无标签数据
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部