期刊文献+
共找到1,612篇文章
< 1 2 81 >
每页显示 20 50 100
Application of Neural network PID Controller in Constant Temper-ature and Constant Liquid-level System 被引量:11
1
作者 (College of information and control engineering, University of Petroleum, Dongying 257061, China) Chen Guochu Hao Ninmei Liu Xianguang(College of electricity engineering, University of Xi ’ an Communication, Xi’ an 710049, China) Zhang Lin (Workshop of Instrument of Plastic Plant, Qilu Petrochemical Corp., Zibo 255411, China) Wang Junhong 《微计算机信息》 2003年第1期23-24,42,共3页
Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show t... Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters. 展开更多
关键词 pid控制器 神经网络 pid控制 恒温恒液位系统
在线阅读 下载PDF
Application of PID Controller Based on BP Neural Network in Export Steam’s Temperature Control System 被引量:5
2
作者 朱增辉 孙慧影 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期84-87,共4页
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla... By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system. 展开更多
关键词 pid controller based on BP neural network supercritical power unit export steam temperature large timedelay
在线阅读 下载PDF
Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models 被引量:8
3
作者 Lianfei ZHAI Tianyou CHAI 《控制理论与应用(英文版)》 EI 2006年第1期62-69,共8页
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra... For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm. 展开更多
关键词 NONLINEAR Decoupling control pid neural networks Multiple models Generalized minimum variance
在线阅读 下载PDF
Adaptive Server Load Balancing in SDN Using PID Neural Network Controller
4
作者 R.Malavika M.L.Valarmathi 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期229-243,共15页
Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though ... Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots. 展开更多
关键词 Software defined networks pid neural network controller closed loop control theory server load balancing server response time
在线阅读 下载PDF
Research on the controller of an arc welding process based on a PID neural network
5
作者 Kuanfang HE Shisheng HUANG 《控制理论与应用(英文版)》 EI 2008年第3期327-329,共3页
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding proces... A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process. 展开更多
关键词 Welding process Characteristic of output pid neural network controlLER
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
6
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control Recurrent neural networks Intelligent pid control.
在线阅读 下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计
7
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 PSO-BP神经网络 模糊pid算法 控制系统
在线阅读 下载PDF
基于改进北方苍鹰算法的RBF-PID海参热泵干燥温度控制
8
作者 肖扬 李占英 张鹏飞 《大连工业大学学报》 2025年第1期73-78,共6页
针对海参干燥过程中温度控制不够精准和能耗高的问题,提出了基于改进的北方苍鹰算法、径向基函数和比例-积分-微分算法的温度控制算法及热泵干燥系统设计。针对传统北方苍鹰算法初始解随机分布不均匀和容易陷入局部最优的问题,提出了在... 针对海参干燥过程中温度控制不够精准和能耗高的问题,提出了基于改进的北方苍鹰算法、径向基函数和比例-积分-微分算法的温度控制算法及热泵干燥系统设计。针对传统北方苍鹰算法初始解随机分布不均匀和容易陷入局部最优的问题,提出了在传统北方苍鹰算法加入Tent混沌映射,优化初始种群均匀性、遍历性,在第二阶段采用非线性自适应半径,并在第二阶段结束后加入差分进化算法以增加个体搜索广度的方法,增强了算法搜索最优解的能力。采用改进的北方苍鹰算法(INGO)优化RBF神经网络参数,搭建了INGO-RBF-PID温度控制算法。消融实验结果表明,在2%误差范围内,该算法的稳定性和快速性均优于传统的PID、RBF-PID和未改进的NGO-RBF-PID。在S7-1200 PLC中进行仿真验证,该算法对于温度控制系统具有较好的性能,可为海参干燥系统提供支持。 展开更多
关键词 北方苍鹰算法 RBF神经网络 pid控制 可编程控制器
在线阅读 下载PDF
A Novel Adaptive Neural Network Compensator as Applied to Position Control of a Pneumatic System 被引量:1
9
作者 Behrad Dehghan Sasan Taghizadeh +1 位作者 Brian Surgenor Mohammed Abu-Mallouh 《Intelligent Control and Automation》 2011年第4期388-395,共8页
Considerable research has been conducted on the control of pneumatic systems. However, nonlinearities continue to limit their performance. To compensate, advanced nonlinear and adaptive control strategies can be used.... Considerable research has been conducted on the control of pneumatic systems. However, nonlinearities continue to limit their performance. To compensate, advanced nonlinear and adaptive control strategies can be used. But the more successful advanced strategies typically need a mathematical model of the system to be controlled. The advantage of neural networks is that they do not require a model. This paper reports on a study whose objective is to explore the potential of a novel adaptive on-line neural network compensator (ANNC) for the position control of a pneumatic gantry robot. It was found that by combining ANNC with a traditional PID controller, tracking performance could be improved on the order of 45% to 70%. This level of performance was achieved after careful tuning of both the ANNC and PID components. The paper sets out to document the ANNC algorithm, the adopted tuning procedure, and presents experimental results that illustrate the adaptive nature of NN and confirms the performance achievable with ANNC. A major contribution is demonstration that tuning of ANNC requires no more effort than the tuning of PID. 展开更多
关键词 GANTRY ROBOT Servopneumatics neural networks Adaptive control pid control
在线阅读 下载PDF
Adaptive proportional integral differential control based on radial basis function neural network identification of a two-degree-of-freedom closed-chain robot
10
作者 陈正洪 王勇 李艳 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期457-461,共5页
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr... A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method. 展开更多
关键词 closed-chain robot radial basis function (RBF) neural network adaptive proportional integral differential pid control identification neural network
在线阅读 下载PDF
改进BP神经网络PID控制的机械臂电液伺服系统
11
作者 张森 韦明 王豪 《自动化与仪表》 2025年第4期23-28,共6页
针对机械臂电液伺服系统中的液压缸位置跟踪控制精度问题,提出一种基于改进BP神经网络的液压缸位移PID控制策略。首先,分析了电液伺服控制系统工作原理并建立数学模型;其次,引入自适应动量项、改进的激活函数及改进的拟牛顿法来优化BP... 针对机械臂电液伺服系统中的液压缸位置跟踪控制精度问题,提出一种基于改进BP神经网络的液压缸位移PID控制策略。首先,分析了电液伺服控制系统工作原理并建立数学模型;其次,引入自适应动量项、改进的激活函数及改进的拟牛顿法来优化BP神经网络,提高神经网络的映射能力以及响应速度,实现对PID控制参数的自适应整定;最后,在Matlab实验平台对液压缸位置跟踪和抗扰动能力进行仿真。仿真结果表明,与传统PID控制和BP-PID控制相比,改进的BP-PID控制抗干扰能力和鲁棒性更强,可以有效提高电液伺服系统位置跟踪精度和响应速度。 展开更多
关键词 电液伺服系统 位置控制 改进的BP神经网络 pid控制器
在线阅读 下载PDF
基于BP神经的PID控制卸船机防撞系统在港口散货装卸领域的应用与研究
12
作者 匡磊 朱淑勇 秦利敏 《新疆钢铁》 2025年第1期111-113,共3页
本文旨在探讨基于BP神经网络的PID控制卸船机防撞系统在港口散货装卸领域的应用与研究。通过分析传统卸船机防撞技术的局限性,本文提出了一种创新的防撞系统,该系统融合了BP神经网络与PID控制算法,实现了对卸船机运行状态的实时监测与... 本文旨在探讨基于BP神经网络的PID控制卸船机防撞系统在港口散货装卸领域的应用与研究。通过分析传统卸船机防撞技术的局限性,本文提出了一种创新的防撞系统,该系统融合了BP神经网络与PID控制算法,实现了对卸船机运行状态的实时监测与精确控制,有效提升了港口散货装卸作业的安全性和效率。本文详细阐述了系统的架构、关键技术、实验设计、结果分析以及实际应用效果,为港口散货装卸作业的智能化管理提供了有力支持。 展开更多
关键词 BP神经网络 pid控制 卸船机防撞系统 港口散货装卸 智能化管理
在线阅读 下载PDF
Particle Swarm Optimization Based Fuzzy-Neural Like PID Controller for TCP/AQM Router
13
作者 Mohammed Z. Al-Faiz Shahad A. Sadeq 《Intelligent Control and Automation》 2012年第1期71-77,共7页
In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance... In this paper a PID Fuzzy-Neural controller (FNC) is designed as an Active Queue Management (AQM) in internet routers to improve the performance of Fuzzy Proportional Integral (FPI) controller for congestion avoidance in computer networks. A combination of fuzzy logic and neural network can generate a fuzzy neural controller which in association with a neural network emulator can improve the output response of the controlled system. This combination uses the neural network training ability to adjust the membership functions of a PID like fuzzy neural controller. The goal of the controller is to force the controlled system to follow a reference model with required transient specifications of minimum overshoot, minimum rise time and minimum steady state error. The fuzzy membership functions were tuned using the propagated error between the plant outputs and the desired ones. To propagate the error from the plant outputs to the controller, a neural network is used as a channel to the error. This neural network uses the back propagation algorithm as a learning technique. Firstly the parameters of PID of Fuzzy-Neural controller are selected by trial and error method, but to get the best controller parameters the Particle Swarm Optimization (PSO) is used as an optimization method for tuning the PID parameters. From the obtained results, it is noted that the PID Fuzzy-Neural controller provides good tracking performance under different circumstances for congestion avoidance in computer networks. 展开更多
关键词 neural networks Fuzzy LOGIC pid controller AQM PSO Computer network
在线阅读 下载PDF
Neural network-based TIG weld width fuzzy controller
14
作者 李文 张福恩 孙辉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第3期40-44,共5页
A netal network-based fuzzy self-tuning PID controller theh is prope to control the dynamic process ofpulse TIG welding uses fuzzy logic and neural network to adjust the parameters of PID controller on line, and simul... A netal network-based fuzzy self-tuning PID controller theh is prope to control the dynamic process ofpulse TIG welding uses fuzzy logic and neural network to adjust the parameters of PID controller on line, and simula-tion results show that the controller has not only simple nonlinear control of tfuzzy control, but also the learning capabil-ity and adaptability of neural netwrk. 展开更多
关键词 pid control FUZZY LOGIC neural network TIG WELDING
在线阅读 下载PDF
基于免疫神经网络PID的并网光伏发电机组功率自动控制
15
作者 吴敏 《自动化应用》 2025年第1期148-150,158,共4页
常规的光伏发电机组功率控制方法以功率特性分析为主,输出功率并未考虑无功功率,影响了并网稳定性。因此,设计了基于免疫神经网络PID的并网光伏发电机组功率自动控制方法。通过调整光伏发电机组的输出电压,跟踪并网光伏发电机组的最大... 常规的光伏发电机组功率控制方法以功率特性分析为主,输出功率并未考虑无功功率,影响了并网稳定性。因此,设计了基于免疫神经网络PID的并网光伏发电机组功率自动控制方法。通过调整光伏发电机组的输出电压,跟踪并网光伏发电机组的最大功率点,挽回并网产生的能量损失。基于免疫神经网络建立光伏功率PID自动控制规则,利用免疫反馈规则调整PID控制模型的参数,优化处理发电机组功率自动控制的偏差信号。根据同步发电机励磁原理,调节并网光伏发电机组定子内电动势,完成发电机组无功功率自动控制任务。采用对比实验验证了该方法的自动控制效果更佳,能够应用于实际生活。 展开更多
关键词 免疫神经网络pid 并网光伏 光伏发电机组 功率自动控制 同步发电机
在线阅读 下载PDF
采用改进BP-PID控制的机器人避障仿真研究 被引量:1
16
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 BP神经网络 pid控制器 改进粒子群算法 避障 仿真
在线阅读 下载PDF
基于模糊神经网络PID的煤矿掘进机俯仰控制研究 被引量:2
17
作者 毛清华 陈彦璋 +3 位作者 马骋 王川伟 张飞 柴建权 《工矿自动化》 CSCD 北大核心 2024年第8期135-143,共9页
目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出... 目前煤矿掘进机俯仰控制主要采用PID控制方法,在掘进机俯仰控制时变性与液压系统非线性情况下的控制精度不高。掘进机俯仰控制通过控制液压缸行程实现,将传统PID算法与模糊控制、神经网络等相结合,可有效提高液压缸行程控制精度。提出了一种基于模糊神经网络PID的煤矿掘进机俯仰控制方法。通过分析掘进机支撑部运动学关系,得到俯仰角与支撑部液压缸的数学关系;介绍了掘进机俯仰控制液压系统工作原理,建立了液压系统及其传递函数模型;将模糊控制与神经网络相结合,形成模糊神经网络,利用模糊神经网络优化PID控制参数,再结合支撑机构数学模型和液压系统传递函数模型,建立掘进机俯仰角模糊神经网络PID控制模型,实现煤矿掘进机俯仰机构自动精确控制。该方法可使掘进机俯仰机构更加快速、准确到达预设位置,解决掘进机俯仰控制中的时变性与非线性难题。仿真结果表明:模糊神经网络PID控制算法相较于模糊PID和PID控制算法,跟踪误差分别降低了69.34%和74.49%。通过液压缸位移控制模拟煤矿掘进机在突变工况和跟随工况下的俯仰控制,结果表明:模糊神经网络PID控制算法相比模糊PID和PID控制算法,俯仰控制跟踪误差最小,对位置信号的平均响应时间分别缩短了27.22%和50.33%,动态控制性能更好。 展开更多
关键词 掘进机俯仰控制 俯仰角 模糊神经网络pid 液压系统 液压缸位移控制 支撑机构
在线阅读 下载PDF
Nonlinear system PID-type multi-step predictive control 被引量:6
18
作者 YanZHANG ZengqiangCHEN ZhuzhiYUAN 《控制理论与应用(英文版)》 EI 2004年第2期201-204,共4页
A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient alg... A compound neural network was constructed during the process of identification and multi-step prediction. Under the PID-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller’s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance. 展开更多
关键词 Multi-step predictive control neural networks pid control Nonlinear system
在线阅读 下载PDF
基于模糊神经网络的氢液化氦气压力PID控制 被引量:1
19
作者 李安琪 秦可欣 +1 位作者 杨思锋 兰玉岐 《低温工程》 CAS CSCD 北大核心 2024年第2期92-98,共7页
为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比... 为了解决氢液化装置氦气压力调节系统超调量大、响应速度慢、调节时间长、控制参数无法在线整定等问题,针对系统具有非线性和时变性的特点,设计了基于模糊神经网络的PID控制器以及基于双曲正切函数的改进型激活函数。仿真结果表明:相比传统PID控制或模糊PID控制,采用模糊神经网络PID控制的系统动态性能显著改善,使得氢液化装置的氦气压力调节更加稳定可靠。 展开更多
关键词 氦气压力调节系统 模糊神经网络 pid控制 压力控制
在线阅读 下载PDF
基于PSO改进BP算法的直流电子负载PID控制仿真 被引量:6
20
作者 蒋利炜 何可人 陈航 《计算机仿真》 2024年第1期306-310,共5页
针对电子负载控制灵敏度低、稳定性差等问题,提出基于PSO-BP-PID的直流电子负载控制方法。分析电子负载基本结构,构建数学模型,分析电子负载在不同工作模式下的电流变化规律;建立三层BP网络模型,分别描述每层结构的输入与输出内容;为提... 针对电子负载控制灵敏度低、稳定性差等问题,提出基于PSO-BP-PID的直流电子负载控制方法。分析电子负载基本结构,构建数学模型,分析电子负载在不同工作模式下的电流变化规律;建立三层BP网络模型,分别描述每层结构的输入与输出内容;为提高BP网络的学习能力,减少控制误差,将PSO算法作为学习算法,确定粒子群规模、惯性权重等重要参数,获得所有粒子适应度值,不断更新个体的位置与速度,当满足收敛条件时,输出最优解,实现控制参数的自适应调整;根据算法特征,设计控制器整体结构,利用该控制器即可实现直流电子负载控制。仿真结果表明,所提方法的控制误差小,响应速度快,且控制过程中能够有效抑制谐波。 展开更多
关键词 粒子群算法 神经网络 控制器 直流电子负载 负载控制
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部