期刊文献+
共找到530篇文章
< 1 2 27 >
每页显示 20 50 100
Projected change in precipitation forms in the Chinese Tianshan Mountains based on the Back Propagation Neural Network Model 被引量:1
1
作者 REN Rui LI Xue-mei +2 位作者 LI Zhen LI Lan-hai HUANG Yi-yu 《Journal of Mountain Science》 SCIE CSCD 2022年第3期689-703,共15页
In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional ru... In the context of global warming,precipitation forms are likely to transform from snowfall to rainfall with a more pronounced trend.The change in precipitation forms will inevitably affect the processes of regional runoff generation and confluence as well as the annual distribution of runoff.Most researchers used precipitation data from the CMIP5 model directly to study future precipitation trends without distinguishing between snowfall and rainfall.CMIP5 models have been proven to have better performance in simulating temperature but poorer performance in simulating precipitation.To overcome the above limitations,this paper used a Back Propagation Neural Network(BNN)to predict the rainfall-to-precipitation ratio(RPR)in months experiencing freezing-thawing transitions(FTTs).We utilized the meteorological(air pressure,air temperature,evaporation,relative humidity,wind speed,sunshine hours,surface temperature),topographic(altitude,slope,aspect)and geographic(longitude,latitude)data from 28 meteorological stations in the Chinese Tianshan Mountains region(CTMR)from 1961 to 2018 to calculate the RPR and constructed an index system of impact factors.Based on the BNN,decision-making trial and evaluation laboratory method(BP-DEMATEL),the key factors driving the transformation of the RPR in the CTMR were identified.We found that temperature was the only key factor affecting the transformation of the RPR in the BP-DEMATEL model.Considering the relationship between temperature and the RPR,the future temperature under different representative concentration pathways(RCPs)(RCP2.6/RCP4.5/RCP8.5)provided by 21 CMIP5 models and the meteorological factors from meteorological stations were input into the BNN model to acquire the future RPR from 2011 to 2100.The results showed that under the three scenarios,the RPR in the number of months experiencing FTTs during 2011-2100 will be higher than that in the historical period(1981-2010)in the CTMR.Furthermore,in terms of spatial variation,the RPR values on the south slope will be larger than those on the north slope under the three emission scenarios.Moreover,the RPR values exhibited different variation characteristics under different emission scenarios.Under the low-emission scenario(RCP2.6),as time passed,the RPR values changed slightly at more stations.Under the mediumemission scenario(RCP4.5),the RPR increased in the whole CTMR and stabilized on the north slope by the end of this century.Under the high-emission scenario(RCP8.5),the RPR values increased significantly through the 21 st century in the whole CTMR.This study may help to provide a scientific management basis for agricultural production and hydrology. 展开更多
关键词 Global warming Tianshan Mountains region Precipitation forms CMIP5 models back propagation neural network model
在线阅读 下载PDF
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
2
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
在线阅读 下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
3
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
在线阅读 下载PDF
COMBINATION OF DISTRIBUTED KALMAN FILTER AND BP NEURAL NETWORK FOR ESG BIAS MODEL IDENTIFICATION 被引量:3
4
作者 张克志 田蔚风 钱峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期226-231,共6页
By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets ... By combining the distributed Kalman filter (DKF) with the back propagation neural network (BPNN),a novel method is proposed to identify the bias of electrostatic suspended gyroscope (ESG). Firstly,the data sets of multi-measurements of the same ESG in different noise environments are "mapped" into a sensor network,and DKF with embedded consensus filters is then used to preprocess the data sets. After transforming the preprocessed results into the trained input and the desired output of neural network,BPNN with the learning rate and the momentum term is further utilized to identify the ESG bias. As demonstrated in the experiment,the proposed approach is effective for the model identification of the ESG bias. 展开更多
关键词 model identification distributed Kalman filter(DKF) back propagation neural network(BPNN) electrostatic suspended gyroscope(ESG)
在线阅读 下载PDF
Construction of Early-warning Model for Plant Diseases and Pests Based on Improved Neural Network 被引量:2
5
作者 曹志勇 邱靖 +1 位作者 曹志娟 杨毅 《Agricultural Science & Technology》 CAS 2009年第6期135-137,154,共4页
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ... By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform. 展开更多
关键词 backward propagation neural network Particle swarm algorithm Plant diseases and pests Early-warning model
在线阅读 下载PDF
Applying Artificial Neural Networks to Modeling the Middle Atmosphere 被引量:2
6
作者 肖存英 胡雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期883-890,共8页
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag... An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause. 展开更多
关键词 artificial neural network middle atmosphere modelING back-propagation algorithm NRLMSISE- 00 model
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
7
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms back propagation model (BP model) OPTIMIZATION
在线阅读 下载PDF
Artificial Neural Network Performing the Forward Operation of Color Appearance Model
8
作者 柴冰华 廖宁放 杨卫平 《Journal of Beijing Institute of Technology》 EI CAS 2003年第S1期54-57,共4页
A method of the forward operation of color appearance (from colorimetric attributes to color appearance attributes) using an artificial neural network (ANN) is presented The neural network model developed is a multila... A method of the forward operation of color appearance (from colorimetric attributes to color appearance attributes) using an artificial neural network (ANN) is presented The neural network model developed is a multilayer feedforward neural network model for predicting color appearance model (CAM). This method greatly decreased the mathematical computation in color appearance prediction. The error backed-propagation (BP) algorithm was applied in the training of the neural networks, and it was trained and tested by the LUTCHI color appearance datasets which are the most comprehensive one in testing color appearance model. CRT was selected as a typical example in experiment because it is usually used as self-luminous object in fact, and several ways for choosing training samples were included and compared each other. The testing results show that the color appearance prediction using artificial neural network is well consistent with visual evaluation. 展开更多
关键词 artificial neural networks enor-backed-propagation color appearance model
在线阅读 下载PDF
Advances in Deep-Learning-based Precipitation Nowcasting Techniques
9
作者 ZHENG Qun LIU Qi +1 位作者 LAO Ping LU Zhen-ci 《Journal of Tropical Meteorology》 SCIE 2024年第3期337-350,共14页
Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than... Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than numerical weather models.The core concept involves the spatio-temporal extrapolation of current precipitation fields derived from ground radar echoes and/or satellite images,which was generally actualized by employing computer image or vision techniques.Recently,with stirring breakthroughs in artificial intelligence(AI)techniques,deep learning(DL)methods have been used as the basis for developing novel approaches to precipitation nowcasting.Notable progress has been obtained in recent years,manifesting the strong potential of DL-based nowcasting models for their advantages in both prediction accuracy and computational cost.This paper provides an overview of these precipitation nowcasting approaches,from which two stages along the advancing in this field emerge.Classic models that were established on an elementary neural network dominated in the first stage,while large meteorological models that were based on complex network architectures prevailed in the second.In particular,the nowcasting accuracy of such data-driven models has been greatly increased by imposing suitable physical constraints.The integration of AI models and physical models seems to be a promising way to improve precipitation nowcasting techniques further. 展开更多
关键词 precipitation nowcasting deep learning neural network classic model large model
在线阅读 下载PDF
Predicting formation lithology from log data by using a neural network 被引量:6
10
作者 Wang Kexiong Zhang Laibin 《Petroleum Science》 SCIE CAS CSCD 2008年第3期242-246,共5页
In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the... In order to increase drilling speed in deep complicated formations in Kela-2 gas field, Tarim Basin, Xinjiang, west China, it is important to predict the formation lithology for drilling bit optimization. Based on the conventional back propagation (BP) model, an improved BP model was proposed, with main modifications of back propagation of error, self-adapting algorithm, and activation function, also a prediction program was developed. The improved BP model was successfully applied to predicting the lithology of formations to be drilled in the Kela-2 gas field. 展开更多
关键词 Kela-2 gas field neural network improved back-propagation (BP) model log data lithology prediction
在线阅读 下载PDF
Application of neural network to prediction of plate finish cooling temperature
11
作者 王丙兴 张殿华 +3 位作者 王君 于明 周娜 曹光明 《Journal of Central South University of Technology》 EI 2008年第1期136-140,共5页
To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathe... To improve the deficiency of the control system of finish cooling temperature (FCT), a new model developed from a combination of a multilayer perception neural network as the self-learning system and traditional mathematical model were brought forward to predict the plate FCT. The relationship between the self-learning factor of heat transfer coefficient and its influencing parameters such as plate thickness, start cooling temperature, was investigated. Simulative calculation indicates that the deficiency of FCT control system is overcome completely, the accuracy of FCT is obviously improved and the difference between the calculated and target FCT is controlled between -15 ℃ and 15 ℃. 展开更多
关键词 PLATE heat transfer coefficient mathematical model back propagation (BP) neural network
在线阅读 下载PDF
Activated sludge process based on artificial neural network
12
作者 ZHANG Wen-yi(张文艺) +1 位作者 CAI Jian-an(蔡建安) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第4期383-386,共4页
Considering the difficulty of creating water quality model for activated sludge system, a typical BP artificial neural network model has been established to simulate the operation of a waste water treatment facilities... Considering the difficulty of creating water quality model for activated sludge system, a typical BP artificial neural network model has been established to simulate the operation of a waste water treatment facilities. The comparison of prediction results with the on-spot measurements shows the model, the model is accurate and this model can also be used to realize intelligentized on-line control of the wastewater processing process. 展开更多
关键词 artificial neural network back-propagation ACTIVATED SLUDGE system model
在线阅读 下载PDF
Back-Propagation Artificial Neural Networks for Water Supply Pipeline Model
13
作者 朱东海 张土乔 毛根海 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第5期527-531,共5页
Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was iden... Water supply pipelines are the lifelines of a city. When pipelines burst, the burst site is difficult to locate by traditional methods such as manual tools or only by watching. In this paper, the burst site was identified using back-propagation (BP) artificial neural networks (ANN). The study is based on an indoor urban water supply model experiment. The key to appling BP ANN is to optimize the ANN's topological structure and learning parameters. This paper presents the optimizing method for a 3-layer BP neural network's topological structure and its learning parameters-learning ratio and the momentum factor. The indoor water supply pipeline model experimental results show that BP ANNs can be used to locate the burst point in urban water supply systems. The topological structure and learning parameters were optimized using the experimental results. 展开更多
关键词 back-propagation artificial neural network (BP ANN) learning ratio momentum factor water supply pipelines model experiment
原文传递
A Novel Evaluation Strategy to Artificial Neural Network Model Based on Bionics
14
作者 Sen Tian Jin Zhang +3 位作者 Xuanyu Shu Lingyu Chen Xin Niu You Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第1期224-239,共16页
With the continuous deepening of Artificial Neural Network(ANN)research,ANN model structure and function are improving towards diversification and intelligence.However,the model is more evaluated from the pros and con... With the continuous deepening of Artificial Neural Network(ANN)research,ANN model structure and function are improving towards diversification and intelligence.However,the model is more evaluated from the pros and cons of the problem-solving results and the lack of evaluation from the biomimetic aspect of imitating neural networks is not inclusive enough.Hence,a new ANN models evaluation strategy is proposed from the perspective of bionics in response to this problem in the paper.Firstly,four classical neural network models are illustrated:Back Propagation(BP)network,Deep Belief Network(DBN),LeNet5 network,and olfactory bionic model(KIII model),and the neuron transmission mode and equation,network structure,and weight updating principle of the models are analyzed qualitatively.The analysis results show that the KIII model comes closer to the actual biological nervous system compared with other models,and the LeNet5 network simulates the nervous system in depth.Secondly,evaluation indexes of ANN are constructed from the perspective of bionics in this paper:small-world,synchronous,and chaotic characteristics.Finally,the network model is quantitatively analyzed by evaluation indexes from the perspective of bionics.The experimental results show that the DBN network,LeNet5 network,and BP network have synchronous characteristics.And the DBN network and LeNet5 network have certain chaotic characteristics,but there is still a certain distance between the three classical neural networks and actual biological neural networks.The KIII model has certain small-world characteristics in structure,and its network also exhibits synchronization characteristics and chaotic characteristics.Compared with the DBN network,LeNet5 network,and the BP network,the KIII model is closer to the real biological neural network. 展开更多
关键词 Artificial neural network(ANN) back propagation(BP)network Deep Belief network(DBN) LeNet5 network Olfactory bionic model(KIII model) Small world Chaos SYNCHRONOUS
原文传递
Bottom hole pressure estimation using hybridization neural networks and grey wolves optimization 被引量:7
15
作者 Menad Nait Amar Nourddine Zeraibi Kheireddine Redouane 《Petroleum》 2018年第4期419-429,共11页
An effective design and optimum production strategies of a well depend on the accurate prediction of its bottom hole pressure(BHP)which may be calculated or determined by several methods.However,it is not practical te... An effective design and optimum production strategies of a well depend on the accurate prediction of its bottom hole pressure(BHP)which may be calculated or determined by several methods.However,it is not practical technically or economically to apply for a well test or to deploy a permanent pressure gauge in the bottom hole to predict the BHP.Consequently,several correlations and mechanistic models based on the knownsurfacemeasurementshave beendeveloped.Unfortunately,all these tools(correlations&mechanistic models)are limited to some conditions and intervals of application.Therefore,establish a global model that ensures a large coverage of conditions with a reduced cost and high accuracy becomes a necessity.In this study,we propose new models for estimating bottom hole pressure of vertical wells with multiphase flow.First,Artificial Neural Network(ANN)based on back propagation training(BP-ANN)with 12 neurons in its hidden layer is established using trial and error.The next methods correspond to optimized or evolved neural networks(optimize the weights and thresholds of the neural networks)with Grey Wolves Optimization(GWO),and then its accuracy to reach the global optima is compared with 2 other naturally inspired algorithms which are the most used in the optimization field:Genetic Algorithm(GA)and Particle Swarms Optimization(PSO).The models were developed and tested using 100 field data collected from Algerian fields and covering a wide range of variables.The obtained results demonstrate the superiority of the hybridization ANN-GWO compared with the 2 other hybridizations or with the BP learning alone.Furthermore,the evolved neural networks with these global optimization algorithms are strongly shown to be highly effective to improve the performance of the neural networks to estimate flowing BHP over existing approaches and correlations. 展开更多
关键词 Flowing bottom hole pressure(BHP) BHP correlations&mechanistic models Artificial neural network neural network training BP(back propagation) GWO GA PSO
原文传递
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index
16
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function Finite mixture model Linear seemingly unrelated regression back propagation neural network Carbon storage
在线阅读 下载PDF
Prediction of discharge in a tidal river using the LSTM-based sequence-to-sequence models
17
作者 Zhigao Chen Yan Zong +2 位作者 Zihao Wu Zhiyu Kuang Shengping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期40-51,共12页
The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended inter... The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models. 展开更多
关键词 discharge prediction long short-term memory networks sequence-to-sequence(Seq2Seq)model tidal river back propagation neural network Changjiang River(Yangtze River)Estuary
在线阅读 下载PDF
基于不同算法优化的back propagation神经网络在三元乙丙橡胶混炼胶门尼黏度预测中的应用 被引量:2
18
作者 李高伟 李佳 +3 位作者 朱金梅 鉴冉冉 苗清 曾宪奎 《合成橡胶工业》 CAS 北大核心 2023年第6期488-494,共7页
分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持... 分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持较高的拟合度和相关性;相比单一的BP神经网络,GA优化后BP神经网络模型的精度提高了58.9%,PSO优化后BP神经网络模型的精度提高了3.57%,说明两种算法优化后的预测模型,特别是GA优化的BP神经网络预测模型对EPDM混炼胶门尼黏度的预测精度改善明显。 展开更多
关键词 back propagation神经网络 遗传算法 粒子群算法 三元乙丙橡胶 混炼胶 门尼黏度 预测模型
在线阅读 下载PDF
Resilient back propagation神经网络模型与autoregression型在径流预报中的比较研究
19
作者 刘畅 王栋 陈景雅 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期666-673,共8页
本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型... 本文以黄河利津站和浙江省白溪水库的月径流水文序列为例,在自相关分析的基础上,建立自回归autoregression模型,并参照其结构建立了相应的resilient back propagation神经网络预报模型.比较结果显示:(1)resilient back propagation模型的模拟预报结果与序列的自相关性有密切关系;(2)当序列有较好的自相关性时,可参照autoregression模型建立相应的resilient back propagation模型;(3)与传统autoregression模型相比,resilient back propagation模型能取得更高的预报精度;且随着预报步长增加,resilient back propagation模型的优势更加明显. 展开更多
关键词 水文时间序列 弹性back propagation神经网络 自回归模型 月径流预报
在线阅读 下载PDF
Prediction of Fluid Force Exerted on Bluff Body by Neural Network Method
20
作者 ZHAO Yong MENG Yang +2 位作者 YU Pengyao WANG Tianlin SU Shaojuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第2期186-192,共7页
With the development of artificial intelligence,artificial neural network(ANN)has been widely used in recent years.In this paper,the method is applied to the prediction of the fluid force exerted on the bluff body whe... With the development of artificial intelligence,artificial neural network(ANN)has been widely used in recent years.In this paper,the method is applied to the prediction of the fluid force exerted on the bluff body when flow passes around.Firstly,back propagation(BP)model and convolutional neural network(CNN)model are introduced;then the mapping relation between the shape of bluff body and the fluid force,which is calculated by computational fluid dynamics(CFD),is established by sample training.Finally,it is used to predict the fluid force of the new shape bluff body.By taking the CFD results as benchmark,CNN model is capable of predicting both the resistance and lift force,while BP model is incompetent to predict lift force.Furthermore,both CNN and BP models have a significant advantage in prediction efficiency,compared by CFD calculation method. 展开更多
关键词 convolutional neural network(CNN)model back propagation(BP)model computational FLUID dynamics(CFD) bluff BODY flow FLUID FORCE
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部