This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertaint...This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.展开更多
The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of a...The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria usi...This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.展开更多
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual...It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.展开更多
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral del...By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.展开更多
In this paper, we consider a class of second-order neutral delay dynamic equations on a time scale T. By means of Riccati transformation technique, we establish some new oscillation criteria in two different condition...In this paper, we consider a class of second-order neutral delay dynamic equations on a time scale T. By means of Riccati transformation technique, we establish some new oscillation criteria in two different conditions. The obtained results enrich the well-known oscillation results for some dynamic equations.展开更多
In the present paper the problem of disturbance rejection of single input-single output neutral time delay systems with multiple measurable disturbances is solved via dynamic controllers. In particular, the general fo...In the present paper the problem of disturbance rejection of single input-single output neutral time delay systems with multiple measurable disturbances is solved via dynamic controllers. In particular, the general form of the controller matrices is presented, while the necessary and sufficient conditions for the controller to be realizable are offered. The proposed technique is applied to a test case neutral time delay central heating system. In particular, the nonlinear model of the plant and its linearized approximation are presented. Based on the linearized model, a two-stage controller is designed in order to regulate the room temperature and the boiler effluent temperature. The performance of the closed loop system is investigated through computational experiments.展开更多
In this paper,a neutral Hopfield neural network with bidirectional connection is considered.In the first step,by choosing the connection weights as parameters bifurcation,the critical point at which a zero root of mul...In this paper,a neutral Hopfield neural network with bidirectional connection is considered.In the first step,by choosing the connection weights as parameters bifurcation,the critical point at which a zero root of multiplicity two occurs in the characteristic equation associated with the linearized system.In the second step,we studied the zeros of a third degree exponential polynomial in order to make sure that except the double zero root,all the other roots of the characteristic equation have real parts that are negative.Moreover,we find the critical values to guarantee the existence of the Bogdanov–Takens bifurcation.In the third step,the normal form is obtained and its dynamical behaviors are studied after the use of the reduction on the center manifold and the theory of the normal form.Furthermore,for the demonstration of our results,we have given a numerical example.展开更多
This paper is devoted to investigating the dynamic output feedback(DOF)control problem of Markovian jump neutral-type stochastic systems with a guaranteed cost function.Both of the state and measurement equations cont...This paper is devoted to investigating the dynamic output feedback(DOF)control problem of Markovian jump neutral-type stochastic systems with a guaranteed cost function.Both of the state and measurement equations contain time delays.Mode-dependent DOF controllers are first designed such that the closed-loop system is asymptotically stable in mean-square and an adequate performance level of this system is guaranteed.Then,sufficient conditions for the solvability of this problem are derived in the form of linear matrix inequalities(LMIs).A numerical example is presented to reveal the effectiveness of our findings.展开更多
文摘This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.
基金Project supported by the National Education Committee Doctoral Foundation of China (20020558092)
文摘The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
文摘This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi^ugeno IT-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.
文摘It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
文摘By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.
基金supported by the Youth Foundation of Anqing Teachers College(KJ201107)the General Foundation of the Education Department of Anhui Province(AQKJ2014B010)
文摘In this paper, we consider a class of second-order neutral delay dynamic equations on a time scale T. By means of Riccati transformation technique, we establish some new oscillation criteria in two different conditions. The obtained results enrich the well-known oscillation results for some dynamic equations.
文摘In the present paper the problem of disturbance rejection of single input-single output neutral time delay systems with multiple measurable disturbances is solved via dynamic controllers. In particular, the general form of the controller matrices is presented, while the necessary and sufficient conditions for the controller to be realizable are offered. The proposed technique is applied to a test case neutral time delay central heating system. In particular, the nonlinear model of the plant and its linearized approximation are presented. Based on the linearized model, a two-stage controller is designed in order to regulate the room temperature and the boiler effluent temperature. The performance of the closed loop system is investigated through computational experiments.
文摘In this paper,a neutral Hopfield neural network with bidirectional connection is considered.In the first step,by choosing the connection weights as parameters bifurcation,the critical point at which a zero root of multiplicity two occurs in the characteristic equation associated with the linearized system.In the second step,we studied the zeros of a third degree exponential polynomial in order to make sure that except the double zero root,all the other roots of the characteristic equation have real parts that are negative.Moreover,we find the critical values to guarantee the existence of the Bogdanov–Takens bifurcation.In the third step,the normal form is obtained and its dynamical behaviors are studied after the use of the reduction on the center manifold and the theory of the normal form.Furthermore,for the demonstration of our results,we have given a numerical example.
基金supported by the National Natural Science Foundation of China under Grant Nos.61703226and 71961002Startup Project of Doctor Scientific Research of Guangxi University of Finance and Economics BS 2019002。
文摘This paper is devoted to investigating the dynamic output feedback(DOF)control problem of Markovian jump neutral-type stochastic systems with a guaranteed cost function.Both of the state and measurement equations contain time delays.Mode-dependent DOF controllers are first designed such that the closed-loop system is asymptotically stable in mean-square and an adequate performance level of this system is guaranteed.Then,sufficient conditions for the solvability of this problem are derived in the form of linear matrix inequalities(LMIs).A numerical example is presented to reveal the effectiveness of our findings.