BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP...BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.展开更多
AIM To investigate whether glucagon-like peptide-2(GLP-2) influences the neurally-induced responses in gastric strips from mice, since no data are available. METHODS For functional experiments, gastric fundal strips w...AIM To investigate whether glucagon-like peptide-2(GLP-2) influences the neurally-induced responses in gastric strips from mice, since no data are available. METHODS For functional experiments, gastric fundal strips were mounted in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via forcedisplacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation(EFS) was applied via two platinum wire rings through which the preparationwas threaded. The effects of GLP-2(2 and 20 nmol/L) were evaluated on the neurally-induced contractile and relaxant responses elicited by EFS. Neuronal nitric oxide synthase(n NOS) enzyme was evaluated by immunohistochemistry.RESULTS In the functional experiments, electrical field stimulation(EFS, 4-16 Hz) induced tetrodotoxin(TTX)-sensitive contractile responses, which were reduced in amplitude by GLP-2(P < 0.05). In the presence of the nitric oxide(NO) synthesis inhibitor L-NNA, GLP-2 no longer influenced the neurally-evoked contractile responses(P > 0.05). The direct smooth muscle response to methacholine was not influenced by GLP-2(P > 0.05). In the presence of guanethidine and carbachol, the addition of GLP-2 to the bath medium evoked TTX-sensitive relaxant responses that were unaffected by L-NNA(P > 0.05). EFS induced a fast NO-mediated relaxation, whose amplitude was enhanced in the presence of the hormone(P < 0.05). Immunohistochemical experiments showed a significant increase(P < 0.05) in n NOS immunoreactivity in the nerve structures after GLP-2 exposure. CONCLUSION The results demonstrate that in gastric fundal strips, GLP-2 influences the amplitude of neurally-induced responses through the modulation of the nitrergic neurotransmission and increases n NOS expression.展开更多
基金Supported by:the Medicine and Health Scientific Research Projects of Shandong Province,No. 2007HZ065
文摘BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.
文摘AIM To investigate whether glucagon-like peptide-2(GLP-2) influences the neurally-induced responses in gastric strips from mice, since no data are available. METHODS For functional experiments, gastric fundal strips were mounted in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via forcedisplacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation(EFS) was applied via two platinum wire rings through which the preparationwas threaded. The effects of GLP-2(2 and 20 nmol/L) were evaluated on the neurally-induced contractile and relaxant responses elicited by EFS. Neuronal nitric oxide synthase(n NOS) enzyme was evaluated by immunohistochemistry.RESULTS In the functional experiments, electrical field stimulation(EFS, 4-16 Hz) induced tetrodotoxin(TTX)-sensitive contractile responses, which were reduced in amplitude by GLP-2(P < 0.05). In the presence of the nitric oxide(NO) synthesis inhibitor L-NNA, GLP-2 no longer influenced the neurally-evoked contractile responses(P > 0.05). The direct smooth muscle response to methacholine was not influenced by GLP-2(P > 0.05). In the presence of guanethidine and carbachol, the addition of GLP-2 to the bath medium evoked TTX-sensitive relaxant responses that were unaffected by L-NNA(P > 0.05). EFS induced a fast NO-mediated relaxation, whose amplitude was enhanced in the presence of the hormone(P < 0.05). Immunohistochemical experiments showed a significant increase(P < 0.05) in n NOS immunoreactivity in the nerve structures after GLP-2 exposure. CONCLUSION The results demonstrate that in gastric fundal strips, GLP-2 influences the amplitude of neurally-induced responses through the modulation of the nitrergic neurotransmission and increases n NOS expression.