Stay cables in cable-stayed bridges are prone to large amplitude oscillations under external excitations.The vibration of the cables is predominantly measured by using accelerometers to measure the acceleration.The dy...Stay cables in cable-stayed bridges are prone to large amplitude oscillations under external excitations.The vibration of the cables is predominantly measured by using accelerometers to measure the acceleration.The dynamic displacement is then usually obtained indirectly from the double integration of the acceleration data.This paper reports an experimental method of measuring the displacement of stayed cables using a digital video camera.With the newly developed videogrammetric technique,the video clips are transferred into image frames,from which the shape and location of the target are identified.The displacement time history is then captured.The technique is applied to a cable-stayed bridge to measure the dynamic displacement of stay cables.The displacement is compared with the acceleration data in the frequency and time domains.The results show that the displacement measured by the digital video camera is comparable to the counterparts integrated from the acceleration data.The vibration frequencies identified from the acceleration are finally used to estimate the tension forces of the cables.The results show that the tension forces have insignificant changes after one year’s operation.展开更多
With the aid of non-contact measurements of vibrating surfaces through laser scanning,operating deflection shapes(ODSs)with high spatial resolutions can be used to graphically characterize damage in plane structures.A...With the aid of non-contact measurements of vibrating surfaces through laser scanning,operating deflection shapes(ODSs)with high spatial resolutions can be used to graphically characterize damage in plane structures.Although numerous damage identification approaches relying on laser-measured ODSs have been developed for plate-type structures,they cannot be directly applied to circular cylinders due to the gap between equations of motions of plates and circular cylinders.To fill this gap,a novel approach is proposed in this study for damage identification of circular cylinders.Damage-induced discontinuities of the derivatives of ODSs can be used to gra-phically manifest the occurrence of the damage,and characterize the location and size of the damage.The approach is experimentally validated on a specimen of the circular cylinder component,whose out-of-plane ODSs in an inspection region are acquired through laser scanning using a scanning laser vibrometer.The results suggest that the occurrence,location,and size of the internal damage of the circular cylinder can be identified.展开更多
基金Supported by the Research Grants Council of the Hong Kong Special Administrative Region of China(No.PolyU 5298/11E)the Hong Kong Polytechnic University(No.A-PD0H).
文摘Stay cables in cable-stayed bridges are prone to large amplitude oscillations under external excitations.The vibration of the cables is predominantly measured by using accelerometers to measure the acceleration.The dynamic displacement is then usually obtained indirectly from the double integration of the acceleration data.This paper reports an experimental method of measuring the displacement of stayed cables using a digital video camera.With the newly developed videogrammetric technique,the video clips are transferred into image frames,from which the shape and location of the target are identified.The displacement time history is then captured.The technique is applied to a cable-stayed bridge to measure the dynamic displacement of stay cables.The displacement is compared with the acceleration data in the frequency and time domains.The results show that the displacement measured by the digital video camera is comparable to the counterparts integrated from the acceleration data.The vibration frequencies identified from the acceleration are finally used to estimate the tension forces of the cables.The results show that the tension forces have insignificant changes after one year’s operation.
基金The authors are grateful for the supports from the Changzhou Policy Guidance Plan-International Science and Technology Cooperation(No.CZ20200003)the Anhui International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures(No.2021AHGHYB01)+1 种基金the Nantong Science and Technology Opening Cooperation Project in 2021(No.BW2021001)the Key R&D Project of Anhui Science and Technology Department(202004b11020026).
文摘With the aid of non-contact measurements of vibrating surfaces through laser scanning,operating deflection shapes(ODSs)with high spatial resolutions can be used to graphically characterize damage in plane structures.Although numerous damage identification approaches relying on laser-measured ODSs have been developed for plate-type structures,they cannot be directly applied to circular cylinders due to the gap between equations of motions of plates and circular cylinders.To fill this gap,a novel approach is proposed in this study for damage identification of circular cylinders.Damage-induced discontinuities of the derivatives of ODSs can be used to gra-phically manifest the occurrence of the damage,and characterize the location and size of the damage.The approach is experimentally validated on a specimen of the circular cylinder component,whose out-of-plane ODSs in an inspection region are acquired through laser scanning using a scanning laser vibrometer.The results suggest that the occurrence,location,and size of the internal damage of the circular cylinder can be identified.