期刊文献+
共找到263篇文章
< 1 2 14 >
每页显示 20 50 100
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION 被引量:4
1
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode... Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm- (GNSGA- Vehicle routing problem (VRP) Multi-objective optimization
在线阅读 下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:28
2
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
3
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm 被引量:1
4
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:4
5
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (NSGA-) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计
6
作者 陆怡宇 张元标 +1 位作者 杨松平 聂楚昕 《振动与冲击》 北大核心 2025年第1期102-112,共11页
利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系... 利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系统优化设计。试验结果表明:产品关键元件实测振动加速度响应曲线与OTPA方法合成的加速度响应曲线吻合良好,验证了OTPA方法的正确性;通过OTPA方法量化各传递路径的振动贡献量,对比识别出产品包装系统的主要振动传递路径;保持非主要传递路径的缓冲衬垫材料不变,应用NSGA-Ⅱ算法优化产品包装件系统中主要振动传递路径处的缓冲衬垫分配,有效降低了关键元件的加速度响应,减少在振动过程中的能量聚集,促使各传递路径的振动贡献量趋于均衡。实现了以缓冲性能为主导,同时兼顾环保性能与成本的包装系统优化设计,验证了优化方法的有效性,为产品包装系统设计提供参考。 展开更多
关键词 随机振动 工况传递路径分析(OTPA) 振动贡献量 非支配排序遗传算法(NSGA-) 减振优化
在线阅读 下载PDF
Optimization of dynamic aperture by using non-dominated sorting genetic algorithm-Ⅱ in a diffraction-limited storage ring with solenoids for generating round beam
7
作者 Chongchong Du Sheng Wang +2 位作者 Jiuqing Wang Saike Tian Jinyu Wan 《Radiation Detection Technology and Methods》 CSCD 2023年第2期271-278,共8页
Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing t... Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA. 展开更多
关键词 Diffraction-limited storage rings Round beam non-dominated sorting genetic algorithm- High energy photon source
原文传递
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
8
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithms(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
Satellite constellation design with genetic algorithms based on system performance
9
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
基于NSGA-Ⅱ的滑油泵叶轮结构优化设计 被引量:1
10
作者 孙永国 金欣 +2 位作者 薛冬 单建平 石晓春 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期559-569,共11页
滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,... 滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,利用NSGA-Ⅱ算法对滑油泵叶轮几何参数进行寻优,对优化前后的滑油泵效率、扬程进行对比分析。采用CFD流体仿真及实验方法对优化结果进行对比验证。结果表明:所选优化参数对滑油泵性能有较大影响,优化后的滑油泵叶片位置附近流动更加平稳,高低压区域过渡平缓,能量损失更小,且降低了汽蚀发生的可能性;优化后的滑油泵设计点扬程提高2.6 m,效率提高2.86%。 展开更多
关键词 滑油泵叶轮 优化设计 非支配排序遗传算法NSGA- 扬程 效率
在线阅读 下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
11
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm (NSGA-)
在线阅读 下载PDF
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:2
12
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm II(NSGA-II)
在线阅读 下载PDF
基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化 被引量:3
13
作者 卓文波 谭国笔 +4 位作者 陈秋任 侯泽宏 王显会 韩维建 黄理 《焊接学报》 EI CAS CSCD 北大核心 2024年第4期20-25,I0004,共7页
为寻求超高强钢电阻点焊时最佳的焊接工艺参数,开展正交试验法设计三因素五水平的平板搭接点焊试验,以焊接时间、焊接电流和电极压力为可调的工艺参数,将熔核直径、压痕深度、拉剪强度及飞溅情况作为焊接接头质量评价指标.基于高斯过程... 为寻求超高强钢电阻点焊时最佳的焊接工艺参数,开展正交试验法设计三因素五水平的平板搭接点焊试验,以焊接时间、焊接电流和电极压力为可调的工艺参数,将熔核直径、压痕深度、拉剪强度及飞溅情况作为焊接接头质量评价指标.基于高斯过程回归和BP神经网络建立起焊接工艺参数与焊接接头质量评价指标之间关系的代理模型,训练的结果显示模型精度很高.最后利用带精英策略的非支配排序的遗传算法NSGA-Ⅱ实现多目标优化,得到各评价指标之间的最优pareto解集.经验证,各评价模型的相对误差值都很小.结果表明,该优化方法有较好的预测效果和稳定性.通过使用较少的试验数据,建立优化模型的方法对电阻点焊及其它焊接领域最佳焊接工艺参数的选取具有重要的指导价值. 展开更多
关键词 多目标优化 电阻点焊工艺参数 代理模型 非支配排序遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ与CFD的H型垂直轴风力机翼型优化设计
14
作者 张念 郑凯 +1 位作者 董兴辉 柳亦兵 《现代制造工程》 CSCD 北大核心 2024年第12期130-136,共7页
为解决因垂直轴风力机叶片的传统配比式研究灵活性不足而导致产生局部最优解的问题,使垂直轴风力机在应对复杂多变的实际问题时有更佳的转化效率,针对在役翼型的升力系数、阻力系数等多项气动性能指标进行优化,以提高空气动力学性能。... 为解决因垂直轴风力机叶片的传统配比式研究灵活性不足而导致产生局部最优解的问题,使垂直轴风力机在应对复杂多变的实际问题时有更佳的转化效率,针对在役翼型的升力系数、阻力系数等多项气动性能指标进行优化,以提高空气动力学性能。通过采用带精英策略的快速非支配排序遗传算法(Non-dominated Sorting Genetic Algorithms-Ⅱ,NSGA-Ⅱ)进行寻优并结合翼型参数化得到优化翼型,然后对优化翼型各气动性能指标进行仿真验证。结果表明:优化翼型空气动力学性能有了显著提升,升阻比提高了20.85%、升力系数提高了17.35%且阻力系数降低了2.91%。验证结果表明:优化翼型较原始翼型风能转化效率有了一定提升,在低风速下,优化翼型所对应的垂直轴风力机有更良好的自启动能力且适应的风速更大、风能转化效率更高。此优化设计将带精英策略的快速非支配排序遗传算法与计算流体动力学(Computational Fluid Dynamics,CFD)仿真相结合,可为垂直轴风力机风能转化效率的提升研究提供新的思路。 展开更多
关键词 垂直轴风力机 翼型参数化 非支配排序遗传算法 精英策略 空气动力学性能
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的RV减速器参数多目标优化研究 被引量:1
15
作者 杨昊霖 王茹芸 +2 位作者 罗利敏 贡林欢 楼应侯 《机电工程》 CAS 北大核心 2024年第4期651-658,共8页
旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究... 旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究。首先,研究了摆线轮平均压力角、传动效率和传动机构体积三者的相关参数之间的关系;然后,以此为优化目标,在摆线轮标准齿廓方程的基础上建立了多目标优化数学模型(该模型采用了基于非支配占优排序遗传学算法(NSGA-Ⅱ)改进了交叉算子系数生成的改进NSGA-Ⅱ算法);通过模型求解得到了帕累托最优解集,根据模糊集合理论的相关方法选取了最优解;最后,以某公司220-BX型RV减速器为例,进行了优化设计,建立了3D模型后进行了有限元分析,并加工出实验样机,进行了传动效率对比实验。实验结果表明:摆线轮平均压力角减小了7.19%,体积减小了11.1%,传动效率提高了4.9%。研究结果表明:该模型交互性强,能提高设计效率并节省设计开销,可为实际RV减速器工程优化设计提供参考。 展开更多
关键词 机械传动 旋转矢量(RV)减速器 改进非支配占优排序遗传学算法(NSGA-) 多目标优化 平均传动压力角 传动效率
在线阅读 下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
16
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
基于NSGA-Ⅱ的智能化电铲多目标最优挖掘轨迹规划
17
作者 陈广玲 张天赐 +2 位作者 付涛 王林涛 宋学官 《现代制造工程》 CSCD 北大核心 2024年第2期142-149,共8页
为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使... 为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使用高次多项式对挖掘轨迹进行插值,将挖掘轨迹寻优问题转化为多项式系数寻优问题,最后,以挖掘时间最短及单位体积物料的挖掘能耗最小作为优化目标,以电机性能与挖掘过程中几何条件等作为约束,利用多目标优化平台PlatEMO,将NSGA-Ⅱ作为多目标优化算法,指定待优化问题的目标函数及约束函数,获取到多目标优化Pareto最优解集,基于决策偏好设置权重并根据TOPSIS法获取最优解,得到多目标最优挖掘轨迹规划结果。结果表明,优化后挖掘轨迹满足实时节能的挖掘要求。 展开更多
关键词 智能化电铲 动力学模型 非支配排序遗传算法 挖掘轨迹规划 多目标优化
在线阅读 下载PDF
基于非支配排序遗传算法-Ⅱ的静态换相开关优化配置方法
18
作者 高靖洋 董振华 +1 位作者 杨思宇 杨健 《环境技术》 2024年第11期193-199,共7页
为应对低压配电网中光伏系统带来的电压三相不平衡问题,本文提出了一种基于非支配排序遗传算法-II的静态换相开关优化配置方法。通过考虑静态换相开关的最佳部署位置,采用NSGA-II算法优化静态换相开关的数量和位置,从而实现成本效益最... 为应对低压配电网中光伏系统带来的电压三相不平衡问题,本文提出了一种基于非支配排序遗传算法-II的静态换相开关优化配置方法。通过考虑静态换相开关的最佳部署位置,采用NSGA-II算法优化静态换相开关的数量和位置,从而实现成本效益最大化。并在IEEE 123节点测试馈线上进行了仿真实验,以验证方法的有效性。仿真结果表明,该方法在IEEE 123节点测试馈线中能够显著减少电压不平衡和网络损耗。在不同渗透水平下,沿馈线的最大电压不平衡度分别降低了80%和60%,总能量损失减少了(69.2~75.7)kWh。本文提出的方法在提高配电系统运行效率和稳定性方面展现了良好的应用前景,为智能电网和可再生能源的可持续发展提供了有力支持。 展开更多
关键词 三相不平衡 非支配排序遗传算法- 换相开关 多目标优化
在线阅读 下载PDF
发夹式换热器壳程流体传热特性及多目标优化
19
作者 李雅侠 王鑫 +2 位作者 李百慧 张丽 张静 《北京化工大学学报(自然科学版)》 北大核心 2025年第2期26-33,共8页
采用数值模拟方法研究了发夹式换热器的壳程流体换热特性,并以提高综合性能指标PEC(总换热量与总功耗之比)和减小无量纲材料成本M'(换热器材料成本与原结构材料成本之比)为目标建立神经网络模型,采用非支配排序遗传算法(NSGA-Ⅱ)对... 采用数值模拟方法研究了发夹式换热器的壳程流体换热特性,并以提高综合性能指标PEC(总换热量与总功耗之比)和减小无量纲材料成本M'(换热器材料成本与原结构材料成本之比)为目标建立神经网络模型,采用非支配排序遗传算法(NSGA-Ⅱ)对无量纲参数折流板间距l'、折流板缺口高度h'、曲率半径r'和雷诺数Re这4个设计变量进行多目标优化。结果显示:在本研究范围内,弯管段的换热量占换热器总换热量的5.0%~16.3%,而功耗仅占总功耗的0.5%~1.0%,说明弯管段结构的存在使得发夹式换热器在功耗小幅增加的情况下换热性能显著提高;参数优化后,得到l'的最佳取值为2.50,h'、r'、Re的最佳取值范围分别为0.33~0.45、0.80~1.30、8000~11000。从优化解集中选取两个代表性解,与原结构相比,优化结构1的PEC提高了25.12%,M'基本不变;优化结构2的PEC提高了17.93%,M'值降低了6.56%,结果表明多目标优化对发夹式换热器结构参数的优化效果明显。 展开更多
关键词 发夹式换热器 结构参数 强化传热 非支配排序遗传算法(NSGA-) 多目标优化
在线阅读 下载PDF
NSGA-Ⅱ算法的改进策略研究 被引量:26
20
作者 陈婕 熊盛武 林婉如 《计算机工程与应用》 CSCD 北大核心 2011年第19期42-45,共4页
带精英策略的非支配排序遗传算法(NSGA-Ⅱ)在多目标优化领域具有广泛的应用,但该算法种群收敛分布不均匀,全局搜索能力较弱,算法运行速度较慢。针对这些局限性提出了改进的排序适应度策略、算术交叉算子策略、按需分层策略和设定阈值选... 带精英策略的非支配排序遗传算法(NSGA-Ⅱ)在多目标优化领域具有广泛的应用,但该算法种群收敛分布不均匀,全局搜索能力较弱,算法运行速度较慢。针对这些局限性提出了改进的排序适应度策略、算术交叉算子策略、按需分层策略和设定阈值选择策略。在典型的测试函数集上的数值实验结果表明,根据这些策略改进的算法得到的非劣解集具有较好的分布性,同时收敛速度更快。 展开更多
关键词 多目标优化算法 带精英策略的非支配排序遗传算法(NSGA-) PARETO最优
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部