期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Hyperbolic Mild Slope Equations with Inclusion of Amplitude Dispersion Effect:Regular Waves 被引量:4
1
作者 金红 邹志利 《China Ocean Engineering》 SCIE EI 2008年第3期431-444,共14页
A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed... A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone. 展开更多
关键词 mild slope equation hyperbolic model nonlinear waves breaking waves
在线阅读 下载PDF
Hyperbolic Mild Slope Equations with Inclusion of Amplitude Dispersion Effect:Random Waves 被引量:2
2
作者 邹志利 金红 《China Ocean Engineering》 SCIE EI 2008年第4期595-610,共16页
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations fo... New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements. 展开更多
关键词 mild slope equations hyperbolic model random waves nonlinear wave
在线阅读 下载PDF
High Order Numerical Code for Hyperbolic Mild-slope Equations with Nonlinear Dispersion Relation
3
作者 IU Zhongbo ZHANG Rixiang CHEN Bing 《Journal of Ocean University of China》 SCIE CAS 2007年第4期421-423,共3页
Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model i... Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model in the time domain. Terms involving the first order spatial derivatives are differenced to O ( Δx )4accuracy utilizing a five-point formula. The nonlinear dispersion relationship proposed by Kirby and Dalrymple (1986) is used to consider the nonlinear effect. A numerical test is performed upon wave propagating over a typical shoal. The agreement between the numerical and the experimental results validates the present model. Biodistribution and applications are also summarized. 展开更多
关键词 hyperbolic mild-slope equations Adams-Bashforth-Moulton scheme nonlinear dispersion property wave
在线阅读 下载PDF
Applying the General Riccati Equation to Construct New Solitary Wave Solutions with Complex Structure of Burgers-Fisher Equation
4
作者 Bicheng Wu Hongyan Pan 《Open Journal of Applied Sciences》 2024年第12期3695-3705,共11页
In the realm of nonlinear physics, it is crucial to establish precise traveling wave solutions and solitary wave solutions for a variety of nonlinear models, as this aids our exploration of these fields. In this paper... In the realm of nonlinear physics, it is crucial to establish precise traveling wave solutions and solitary wave solutions for a variety of nonlinear models, as this aids our exploration of these fields. In this paper, we propose a new method to construct precise solitary wave solutions if nonlinear equation with complex structure. As an application, we employ this method to solve the Burgers-Fisher equation, yielding a multitude of new solitary wave solutions. This approach demonstrates a broader applicability in addressing nonlinear evolution equations (NLEEs). 展开更多
关键词 Riccati equation hyperbolic Function Solutions nonlinear Evolution equation Solitary wave Solution Auxiliary equation
在线阅读 下载PDF
New Numerical Scheme for Simulation of Hyperbolic Mild-Slope Equation 被引量:2
5
作者 郑永红 沈永明 邱大洪 《China Ocean Engineering》 SCIE EI 2001年第2期185-194,共10页
The original hyperbolic mild-slope equation can effectively take into account the combined effects of wave shoaling, refraction, diffraction and reflection, but does not consider the nonlinear effect of waves, and the... The original hyperbolic mild-slope equation can effectively take into account the combined effects of wave shoaling, refraction, diffraction and reflection, but does not consider the nonlinear effect of waves, and the existing numerical schemes for it show some deficiencies. Based on the original hyperbolic mild-slope equation, a nonlinear dispersion relation is introduced in present paper to effectively take the nonlinear effect of waves into account and a new numerical scheme is proposed. The weakly nonlinear dispersion relation and the improved numerical scheme are applied to the simulation of wave transformation over an elliptic shoal. Numerical tests show that the improvement of the numerical scheme makes efficient the solution to the hyperbolic mild-slope equation, A comparison of numerical results with experimental data indicates that the results obtained by use of the new scheme are satisfactory. 展开更多
关键词 nonlinear dispersion relation hyperbolic mild-slope equation numerical simulation water waves
在线阅读 下载PDF
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation 被引量:2
6
作者 YANGQin DAIChao-Qing ZHANGJie-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期240-244,共5页
Some new exact travelling wave and period solutions of discrete nonlinearSchroedinger equation are found by using a hyperbolic tangent function approach, which was usuallypresented to find exact travelling wave soluti... Some new exact travelling wave and period solutions of discrete nonlinearSchroedinger equation are found by using a hyperbolic tangent function approach, which was usuallypresented to find exact travelling wave solutions of certain nonlinear partial differential models.Now we can further extend the new algorithm to other nonlinear differential-different models. 展开更多
关键词 discrete nonlinear Schroedinger equation hyperbolic tangent functionapproach solitary wave solution periodic wave solution
在线阅读 下载PDF
A hyperbolic function approach to constructing exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice 被引量:12
7
作者 扎其劳 斯仁道尔吉 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第3期475-477,共3页
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference... Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations. 展开更多
关键词 hyperbolic function approach nonlinear differential-difference equation exact solitary wave solution
在线阅读 下载PDF
Using Riccati Equation to Construct New Solitary Solutions of Nonlinear Difference Differential Equations 被引量:1
8
作者 Xinxiang Liu Kaiwen Cui Guojiang Wu 《American Journal of Computational Mathematics》 2022年第2期256-266,共11页
In this paper, we use Riccati equation to construct new solitary wave solutions of the nonlinear evolution equations (NLEEs). Through the new function transformation, the Riccati equation is solved, and many new solit... In this paper, we use Riccati equation to construct new solitary wave solutions of the nonlinear evolution equations (NLEEs). Through the new function transformation, the Riccati equation is solved, and many new solitary wave solutions are obtained. Then it is substituted into the (2 + 1)-dimensional BLMP equation and (2 + 1)-dimensional KDV equation as an auxiliary equation. Many types of solitary wave solutions are obtained by choosing different coefficient p<sub>1</sub> and q<sub>1</sub> in the Riccati equation, and some of them have not been found in other documents. These solutions that we obtained in this paper will be helpful to understand the physics of the NLEEs. 展开更多
关键词 nonlinear Evolution equations hyperbolic Function Riccati equation Auxiliary equation Solitary wave Solutions
在线阅读 下载PDF
Interaction of Conormal Waves With Strong and Weak Singularities For Semi-Linear Equations
9
作者 Wang Weike Sheng Weiming(Department of Mathematics, Wuhan University, Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第1期20-24,共5页
We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing s... We first define a kind of new function space, called the space of twice conormal distributions. With some estimates on these function spaces, we can prove that if there exist two characteristic hypersurfaces bearing strong and weak singularities respectively intersect transversally, then some new singularities will take place anti their strength will be no more than the original weak one. 展开更多
关键词 semi-linear hyperbolic partial differential equation conormal distribution nonlinear wave energy estiMate
在线阅读 下载PDF
Application of Hyperbola Function Method to the Family of Third Order Korteweg-de Vries Equations
10
作者 Luwai Wazzan 《Applied Mathematics》 2015年第8期1241-1249,共9页
In this work, we apply a hyperbola function method to solve the nonlinear family of third order Korteweg-de Vries equations. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions ... In this work, we apply a hyperbola function method to solve the nonlinear family of third order Korteweg-de Vries equations. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions and trigonometric functions. The method used is a promising method to solve other nonlinear evaluation equations. 展开更多
关键词 nonlinear FAMILY of Third Order Korteeweg-de Vries The hyperbolA Function Method Ordinary Differential equations hyperbolic Polynomial TRAVELLING wave Solutions
在线阅读 下载PDF
New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics 被引量:2
11
作者 姚若侠 王伟 陈听华 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第11期689-696,共8页
Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional pa... Motivated by the widely used ans¨atz method and starting from the modified Riemann–Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. 展开更多
关键词 modified Riemann–Liouville DERIVATIVE FRACTIONAL complex transformation nonlinear space-and time-fractional partial differential equations TRAVELING wave solution
原文传递
非线性时间分布阶双曲波动方程的广义BDF2⁃θ有限元方法
12
作者 侯雅馨 刘洋 李宏 《应用数学和力学》 北大核心 2025年第1期114-128,共15页
构造了一种基于带有位移参数θ的广义向后差分公式(广义BDF2-θ)的有限元(FE)方法,用于求解非线性时间分布阶双曲波动方程.时间方向由广义BDF2-θ近似进一步得到FE全离散格式.将具有高阶时间导数的模型转化为包括两个低阶方程的耦合系统... 构造了一种基于带有位移参数θ的广义向后差分公式(广义BDF2-θ)的有限元(FE)方法,用于求解非线性时间分布阶双曲波动方程.时间方向由广义BDF2-θ近似进一步得到FE全离散格式.将具有高阶时间导数的模型转化为包括两个低阶方程的耦合系统.证明了格式的稳定性以及两个函数u和p的最优误差估计结果.最后,通过数值算例验证了格式的可行性和有效性. 展开更多
关键词 非线性时间分布阶双曲波动方程 有限元方法 广义BDF2⁃θ 稳定性 误差估计 数值模拟
在线阅读 下载PDF
Exact solitary wave solutions of nonlinear wave equations 被引量:4
13
作者 张桂戌 李志斌 段一士 《Science China Mathematics》 SCIE 2001年第3期396-401,共6页
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. ... The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions. 展开更多
关键词 nonlinear wave equations exact solitary wave solutions travelling wave solutions hyperbolic function method
原文传递
HIGH ACCURACY ARITHMETIC AVERAGE TYPE DISCRETIZATION FOR THE SOLUTION OF TWO-SPACE DIMENSIONAL NONLINEAR WAVE EQUATIONS
14
作者 R.K.MOHANTY VENU GOPAL 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2012年第2期1-18,共18页
In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form u... In this paper,we propose a new high accuracy discretization based on the ideas given by Chawla and Shivakumar for the solution of two-space dimensional nonlinear hyper-bolic partial differential equation of the form utt=A(x,y,t)uxx+B(x,y,t)uyy+g(x,y,t,u,ux,uy,ut),0<x,y<1,t>0 subject to appropriate initial and Dirichlet boundary conditions.We use only five evaluations of the function g and do not require any fictitious points to discretize the differential equation.The proposed method is directly applicable to wave equation in polar coordinates and when applied to a linear telegraphic hyperbolic equation is shown to be unconditionally stable.Numerical results are provided to illustrate the usefulness of the proposed method. 展开更多
关键词 nonlinear hyperbolic equation variable coefficients arithmetic average type approximation wave equation in polar coordinates van der Pol equation telegraphic equation maximum absolute errors.
原文传递
应用非线性色散关系数值求解双曲型缓坡方程 被引量:10
15
作者 郑永红 沈永明 邱大洪 《水利学报》 EI CSCD 北大核心 2001年第2期69-75,共7页
在经典双曲型缓坡方程的基础上 ,通过引入非线性色散关系 ,使其能够有效地考虑波浪的非线性影响 ,数值格式的改进使方程的数值求解快速高效 .将非线性色散关系和改进后的数值格式用于经典的椭圆形浅滩上的波浪变形计算 ,取得了比较满意... 在经典双曲型缓坡方程的基础上 ,通过引入非线性色散关系 ,使其能够有效地考虑波浪的非线性影响 ,数值格式的改进使方程的数值求解快速高效 .将非线性色散关系和改进后的数值格式用于经典的椭圆形浅滩上的波浪变形计算 ,取得了比较满意的结果 . 展开更多
关键词 非线性色散 双曲型缓坡方程 数值模拟 水波 海岸工
在线阅读 下载PDF
双曲函数法与组合KdV-mKdV方程的孤波解 被引量:3
16
作者 朱燕娟 张解放 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 1999年第S1期141-144,共4页
提出一种统一的求解非线性演化方程孤波解的双曲函数法, 利用这用种方法求出了组合 Kd Vm Kd V 方程的两类孤波解. 作为特例, 可给出 m Kd V 方程的两类孤波解, 而且还给出了 Kd V 方程的钟状孤波解.
关键词 非线性演化方程 孤波解 双曲函数法 组合KDV-MKDV方程
在线阅读 下载PDF
Karamoto-Sivashinsky方程新的精确孤立波解 被引量:2
17
作者 套格图桑 斯仁道尔吉 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期257-262,共6页
以双曲正切函数展开法、齐次平衡法和辅助方程法为基础,引入一个双曲函数型辅助方程,同时给出了应用步骤,并借助符号计算系统Mathematica,构造了Karamoto-Sivashinsky方程新的精确孤立波解.这里给出的方法在寻找非线性发展方程的精确解... 以双曲正切函数展开法、齐次平衡法和辅助方程法为基础,引入一个双曲函数型辅助方程,同时给出了应用步骤,并借助符号计算系统Mathematica,构造了Karamoto-Sivashinsky方程新的精确孤立波解.这里给出的方法在寻找非线性发展方程的精确解方面具有普遍意义. 展开更多
关键词 双曲函数型辅助方程 Karamoto-Sivashinsky方程 非线性发展方程 精确孤立波解
在线阅读 下载PDF
一些非线性发展方程孤立波解的分析 被引量:2
18
作者 刘晓平 刘春平 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第4期21-24,共4页
通过对Burgers方程和KdV方程解的分析,给出一般非线性发展方程的双曲函数型孤立波解之间的一个重要关系,即tanhα形式的解和(sinh 2α±r2-1)/(cosh 2α+r)形式的解在方程中是成对出现的,进而得到KdV-Burgers方程的新精确解,最后说... 通过对Burgers方程和KdV方程解的分析,给出一般非线性发展方程的双曲函数型孤立波解之间的一个重要关系,即tanhα形式的解和(sinh 2α±r2-1)/(cosh 2α+r)形式的解在方程中是成对出现的,进而得到KdV-Burgers方程的新精确解,最后说明文献得到的精确解并不是KdV方程和KdV-Burgers方程的新精确解. 展开更多
关键词 双曲函数方法 非线性发展方程 孤立波解
在线阅读 下载PDF
用双曲函数法求KdV-mKdV方程的钟状孤波解和激波状孤波解 被引量:5
19
作者 朱燕娟 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第7期78-80,共3页
提出一种统一的求解非线性演化方程孤波解的双曲函数法 ,并利用这种方法求出了组合KdV mKdV方程的钟状孤波解和激波状孤波解 .作为特例 ,可以给出mKdV方程的两类孤波解 ,而且还给出了KdV方程的钟状孤波解 .双曲函数法是利用非线性波动... 提出一种统一的求解非线性演化方程孤波解的双曲函数法 ,并利用这种方法求出了组合KdV mKdV方程的钟状孤波解和激波状孤波解 .作为特例 ,可以给出mKdV方程的两类孤波解 ,而且还给出了KdV方程的钟状孤波解 .双曲函数法是利用非线性波动方程孤波解的局部性特点 ,将方程的孤波解表示为双曲函数的多项式 ,从而将非线性波动方程的求解问题转化为非线性代数方程组的求解问题 .因此双曲函数法是一种简单而实用的方法 . 展开更多
关键词 非线性演化方程 孤波解 双曲函数法 组合KdV—mKdV方程
在线阅读 下载PDF
Gross-Pitaevskii方程的复行波解 被引量:1
20
作者 相春环 王洪雷 《量子电子学报》 CAS CSCD 北大核心 2008年第2期151-154,共4页
Hyperbolic tangent法是研究非线性微分方程的有力工具,通过利用hyperbolic tangent法得到非线性Gross-Pitaevskii方程的复行波解。
关键词 非线性方程 复行波解 hyperbolic tangent法 Gross—Pitaevskii方程
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部