The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is c...An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonline...This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.展开更多
An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbance...An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.展开更多
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou...In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.展开更多
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece...A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.展开更多
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is pro...A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method.展开更多
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robu...Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.展开更多
On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparis...On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP i...Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r...For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.展开更多
Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model t...Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.展开更多
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design pr...In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.展开更多
Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cann...Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the reference signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.展开更多
In this paper, an optimization model is proposed to simulate and predict the current situation of smog. The model takes the interval grey number sequence with the known possibility function as the original data, and c...In this paper, an optimization model is proposed to simulate and predict the current situation of smog. The model takes the interval grey number sequence with the known possibility function as the original data, and constructs a time-delay nonlinear multivariable grey model MGM based on the new kernel and degree of greyness sequences considering its time-delay and nonlinearity. The time-delay parameter is determined by the maximum value of the grey time-delay absolute correlation degree, and the nonlinear parameter is determined by the minimum value of average relative error. In order to verify the feasibility of the model, this paper uses the smog related data of Nanjing city for simulation and prediction. Compared with the other four models, the new model has higher simulation and prediction accuracy.展开更多
Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex proper...Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex properties, a novel adaptive control algorithm the basis of nonlinear OFS (orthonormal functional series) model is proposed. First, the hybrid model which combines OFS and Volterra series is introduced. Then, a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors. Finally, control simulations and experiments on a nonlinear process with varying time-delay are presented. A number of experimental results validate the efficiency and superiority of this algorithm.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(60574023)the Natural Science Foundation of Shandong Province(Z2005G01).
文摘An optimal tracking control (OTC) problem for linear time-delay large-scale systems affected by external persistent disturbances is investigated. Based on the internal model principle, a disturbance compensator is constructed. The system with persistent disturbances is transformed into an augmented system without persistent disturbances. The original OTC problem of linear time-delay system is transformed into a sequence of linear two- point boundary value (TPBV) problems by introducing a sensitivity parameter and expanding Maclaurin series around it. By solving an OTC law of the augmented system, the OTC law of the original system is obtained. A numerical simulation is provided to illustrate the effectiveness of the proposed method.
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
基金supported by the National Natural Science Foundation of China(No.60574023)the Natural Science Foundation of Shandong Province(No.Z2005G01)
文摘This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.
基金This work was supported in part by the National Natural Science Foundation of China(61873151,62073201)in part by the Shandong Provincial Natural Science Foundation of China(ZR2019MF009)+2 种基金the Taishan Scholar Project of Shandong Province of China(tsqn201909078)the Major Scientific and Technological Innovation Project of Shandong Province,China(2019JAZZ020812)in part by the Major Program of Shandong Province Natural Science Foundation,China(ZR2018ZB0419).
文摘An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.
基金The research was supported by the State Education Grant for Retumed Scholars
文摘In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.
基金The National Natural Science Foundations of China(50505029)
文摘A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.
文摘A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method.
文摘Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.
文摘On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金Supported by the National Natural Science Foundation of China (No. 60025307, No. 60234010) the National 863 Project(No. 2001AA413130,2002AA412420)+1 种基金 Research Fund for the Doctoral Program of Higher Education (No. 20020003063) the National 973 Program
文摘Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China (69974028 60374015)
文摘For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.
基金This project was supported by the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (NCET-05-0485).
文摘Performance robustness problems via the state feedback controller are investigated for a class of uncertain nonlinear systems with time-delay in both state and control, in which the neural networks are used to model the nonlinearities. By using an appropriate uncertainty description and the linear difference inclusion technique, sufficient conditions for existence of such controller are derived based on the linear matrix inequalities (LMIs). Using solutions of LMIs, a state feedback control law is proposed to stabilize the perturbed system and guarantee an upper bound of system performance, which is applicable to arbitrary time-delays.
基金Project (No. 60574081) supported by the National Natural ScienceFoundation of China
文摘In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.
基金This project was supported by the National Nature Science Foundation (60374015) and Shanxi Province Nature Science Foundation (2003A15).
文摘Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the reference signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.
基金supported by the National Natural Science Foundation of China (7170110571901191)+2 种基金the Major Program of the National Social Science Fund of China (17ZDA092)the Key Research Project of Philosophy and Social Sciences in Universities of Jiangsu Province(2018SJZDI111)Jiangsu Provincial Government Scholarship for studying abroad。
文摘In this paper, an optimization model is proposed to simulate and predict the current situation of smog. The model takes the interval grey number sequence with the known possibility function as the original data, and constructs a time-delay nonlinear multivariable grey model MGM based on the new kernel and degree of greyness sequences considering its time-delay and nonlinearity. The time-delay parameter is determined by the maximum value of the grey time-delay absolute correlation degree, and the nonlinear parameter is determined by the minimum value of average relative error. In order to verify the feasibility of the model, this paper uses the smog related data of Nanjing city for simulation and prediction. Compared with the other four models, the new model has higher simulation and prediction accuracy.
文摘Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex properties, a novel adaptive control algorithm the basis of nonlinear OFS (orthonormal functional series) model is proposed. First, the hybrid model which combines OFS and Volterra series is introduced. Then, a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors. Finally, control simulations and experiments on a nonlinear process with varying time-delay are presented. A number of experimental results validate the efficiency and superiority of this algorithm.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.