In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasico...In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).展开更多
The convergence of the maximum entropy method of nonsmooth semi-infinite programmings is proved, and the stability and the strong stability of the method are discussed.
The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite p...The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.展开更多
The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unif...The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.展开更多
In this paper we generalize the concept of a Dini-convex function with Dini derivative and introduce a new concept - Dini-invexity. Some properties of Diniinvex functions are discussed. On the base of this, we study t...In this paper we generalize the concept of a Dini-convex function with Dini derivative and introduce a new concept - Dini-invexity. Some properties of Diniinvex functions are discussed. On the base of this, we study the Wolfe type duality and Mond-Weir type duality for Dini-invex nonsmooth multiobjective programmings and obtain corresponding duality theorems.展开更多
A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential correspondi...A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given.展开更多
This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors ...This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.展开更多
This paper introduces some new generalizations of the concept of (~, p)-invexity for non- differentiable locally Lipschitz functions using the tools of Clarke subdifferential. These functions are used to derive the ...This paper introduces some new generalizations of the concept of (~, p)-invexity for non- differentiable locally Lipschitz functions using the tools of Clarke subdifferential. These functions are used to derive the necessary and sufficient optimality conditions for a class of nonsmooth semi-infinite minmax programming problems, where set of restrictions are indexed in a compact set. Utilizing the sufficient optimality conditions, the authors formulate three types of dual models and establish weak and strong duality results. The results of the paper extend and unify naturally some earlier results from the literature.展开更多
This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-...This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.展开更多
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research t...A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.展开更多
In this paper, we study optimal value functions of generalized semi-infinite min-max programming problems on a noncompact set. Directional derivatives and subdifferential characterizations of optimal value functions a...In this paper, we study optimal value functions of generalized semi-infinite min-max programming problems on a noncompact set. Directional derivatives and subdifferential characterizations of optimal value functions are given. Using these properties,we establish first order optimality conditions for unconstrained generalized semi-infinite programming problems.展开更多
In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the ...In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.展开更多
In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are ap...In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.展开更多
In this paper, we discuss a large number of sets of global parametric sufficient optimality conditions under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
This paper presents a new method, called the maximum entropy method,for solving semi-infinite programming problems, in which the semi-infinite programmingproblem is approximated by one with a single constraint. The co...This paper presents a new method, called the maximum entropy method,for solving semi-infinite programming problems, in which the semi-infinite programmingproblem is approximated by one with a single constraint. The convergence properties forthis method are discussed. Numerical examples are given to show the high effciency of thealgorithm.展开更多
For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a sm...For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a smooth penalty method based on a class of smooth functions. The main feature of this method is that the global solution of the penalty function is not necessarily solved at each iteration, and under mild assumptions, the method is always feasible and efficient when the evaluation of the integral function is not very expensive. The global convergence property is obtained in the absence of any constraint qualifications, that is, any accumulation point of the sequence generated by the algorithm is the solution of the SIP. Moreover, the authors show a perturbation theorem of the method and obtain several interesting results. Furthermore, the authors show that all iterative points remain feasible after a finite number of iterations under the Mangasarian-Fromovitz constraint qualification. Finally, numerical results are given.展开更多
In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable bu...In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a functional optimization problem corresponding to smooth functions where its optimal solutions are the first and second derivatives of these functions in a domain. Then by applying these functional optimization problems for non-smooth functions and using this method we obtain generalized first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is approximated with a linear programming problem that by solving of which, we can obtain these derivatives, as simple as possible. We extend this approach for obtaining generalized high order derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our approach some numerical examples have been presented.展开更多
In this paper, nonsmooth univex, nonsmooth quasiunivex, and nonsmooth pseudounivex functions are introduced. By utilizing these new concepts, sufficient optimality conditions for a weakly efficient solution of the non...In this paper, nonsmooth univex, nonsmooth quasiunivex, and nonsmooth pseudounivex functions are introduced. By utilizing these new concepts, sufficient optimality conditions for a weakly efficient solution of the nonsmooth multiobjective programming problem are established. Weak and strong duality theorems axe also derived for Mond-Weir type multiobjective dual programs.展开更多
基金This work was partially supported by the National Natural Science Foundation of China(Nos.11471059 and 11671282)the Chongqing Research Program of Basic Research and Frontier Technology(Nos.cstc2014jcyjA00037,cstc2015jcyjB00001 and cstc2014jcyjA00033)+2 种基金the Education Committee Project Research Foundation of Chongqing(Nos.KJ1400618 and KJ1400630)the Program for University Innovation Team of Chongqing(No.CXTDX201601026)the Education Committee Project Foundation of Bayu Scholar.
文摘In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 19871049 and 19731001).
文摘The convergence of the maximum entropy method of nonsmooth semi-infinite programmings is proved, and the stability and the strong stability of the method are discussed.
基金Supported by the National Key Basic Research Special Fund(2003CB415200)the National Science Foundation(70371032 and 60274048)the Doctoral Foundation of the Ministry of Education(20020486035)
文摘The aim of this article is to discuss an asymptotic approximation model and its convergence for the minimax semi-infinite programming problem. An asymptotic surrogate constraints method for the minimax semi-infinite programming problem is presented by making use of two general discrete approximation methods. Simultaneously, the consistence and the epi-convergence of the asymptotic approximation problem are discussed.
基金Supported by the Science Foundation of Shaanxi Provincial Educational Department Natural Science Foundation of China(06JK152) Supported by the Graduate Innovation Project of Yanan uni- versity(YCX201003)
文摘The definition of generalized unified (C, α, ρ, d)-convex function is given. The concepts of generalized unified (C, α, ρ, d)-quasiconvexity, generalized unified (C, α, ρ, d)-pseudoconvexity and generalized unified (C, α, ρ, d)-strictly pseudoconvex functions are presented. The sufficient optimality conditions for multiobjective nonsmooth semi-infinite programming are obtained involving these generalized convexity lastly.
文摘In this paper we generalize the concept of a Dini-convex function with Dini derivative and introduce a new concept - Dini-invexity. Some properties of Diniinvex functions are discussed. On the base of this, we study the Wolfe type duality and Mond-Weir type duality for Dini-invex nonsmooth multiobjective programmings and obtain corresponding duality theorems.
基金Project supported by the National Natural Science Foundation of China (No. 10771026)the Foundation of Dalian University of Technology (Nos. MXDUT73008 and MXDUT98009)
文摘A vu-decomposition method for solving a second-order cone problem is presented in this paper. It is first transformed into a nonlinear programming problem. Then, the structure of the Clarke subdifferential corresponding to the penalty function and some results of itsvu-decomposition are given. Under a certain condition, a twice continuously differentiable trajectory is computed to produce a second-order expansion of the objective function. A conceptual algorithm for solving this problem with a superlinear convergence rate is given.
基金supported by the Council of Scientific and Industrial Research(CSIR),New Delhi,India under Grant No.09/013(0474)/2012-EMR-1
文摘This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.
基金supported by the National Board of Higher Mathematics(NBHM)Department of Atomic Energy,India,under Grant No.2/40(12)/2014/R&D-II/10054
文摘This paper introduces some new generalizations of the concept of (~, p)-invexity for non- differentiable locally Lipschitz functions using the tools of Clarke subdifferential. These functions are used to derive the necessary and sufficient optimality conditions for a class of nonsmooth semi-infinite minmax programming problems, where set of restrictions are indexed in a compact set. Utilizing the sufficient optimality conditions, the authors formulate three types of dual models and establish weak and strong duality results. The results of the paper extend and unify naturally some earlier results from the literature.
文摘This paper obtains sufficient optimality conditions for a nonlinear nondifferentiable multiobjective semi-infinite programming problem involving generalized(C,α,ρ,d)-convex functions.The authors formulate Mond-Weir-type dual model for the nonlinear nondifferentiable multiobjective semiinfinite programming problem and establish weak,strong and strict converse duality theorems relating the primal and the dual problems.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
文摘A semi-infinite programming problem is a mathematical programming problem with a finite number of variables and infinitely many constraints. Duality theories and generalized convexity concepts are important research topics in mathematical programming. In this paper, we discuss a fairly large number of paramet- ric duality results under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
基金The authors thank Prof.J.Y.Han,Dr.Lian Shujun and the referees for their valuable suggestion.This work was parially supported by the National Natural Science Foundation of China(Grants No.10171055 and 10171118)the Excellent Young Teachers Program of M0E,P.R.C.the Research Committee of the Hong Kong Polytechnic University.
文摘In this paper, we study optimal value functions of generalized semi-infinite min-max programming problems on a noncompact set. Directional derivatives and subdifferential characterizations of optimal value functions are given. Using these properties,we establish first order optimality conditions for unconstrained generalized semi-infinite programming problems.
基金supported by National Natural Science Foundation of China(Grant No.11271221)
文摘In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.
文摘In this paper, we define a functional optimization problem corresponding to smooth functions which its optimal solution is first derivative of these functions in a domain. These functional optimization problems are applied for non-smooth functions which by solving these problems we obtain a kind of generalized first derivatives. For this purpose, a linear programming problem corresponding functional optimization problem is obtained which their optimal solutions give the approximate generalized first derivative. We show the efficiency of our approach by obtaining derivative and generalized derivative of some smooth and nonsmooth functions respectively in some illustrative examples.
文摘In this paper, we discuss a large number of sets of global parametric sufficient optimality conditions under various generalized (η,ρ)-invexity assumptions for a semi-infinite minmax fractional programming problem.
文摘This paper presents a new method, called the maximum entropy method,for solving semi-infinite programming problems, in which the semi-infinite programmingproblem is approximated by one with a single constraint. The convergence properties forthis method are discussed. Numerical examples are given to show the high effciency of thealgorithm.
基金supported by the National Natural Science Foundation of China under Grant Nos.10971118, 10701047 and 10901096the Natural Science Foundation of Shandong Province under Grant Nos. ZR2009AL019 and BS2010SF010
文摘For the semi-infinite programming (SIP) problem, the authors first convert it into an equivalent nonlinear programming problem with only one inequality constraint by using an integral function, and then propose a smooth penalty method based on a class of smooth functions. The main feature of this method is that the global solution of the penalty function is not necessarily solved at each iteration, and under mild assumptions, the method is always feasible and efficient when the evaluation of the integral function is not very expensive. The global convergence property is obtained in the absence of any constraint qualifications, that is, any accumulation point of the sequence generated by the algorithm is the solution of the SIP. Moreover, the authors show a perturbation theorem of the method and obtain several interesting results. Furthermore, the authors show that all iterative points remain feasible after a finite number of iterations under the Mangasarian-Fromovitz constraint qualification. Finally, numerical results are given.
文摘In this paper, we proposed a Extension Definition to derive, simultaneously, the first, second and high order generalized derivatives for non-smooth functions, in which the involved functions are Riemann integrable but not necessarily locally Lipschitz or continuous. Indeed, we define a functional optimization problem corresponding to smooth functions where its optimal solutions are the first and second derivatives of these functions in a domain. Then by applying these functional optimization problems for non-smooth functions and using this method we obtain generalized first derivative (GFD) and generalized second derivative (GSD). Here, the optimization problem is approximated with a linear programming problem that by solving of which, we can obtain these derivatives, as simple as possible. We extend this approach for obtaining generalized high order derivatives (GHODs) of non-smooth functions, simultaneously. Finally, for efficiency of our approach some numerical examples have been presented.
基金supported by the National Natural Science Foundation of China under Grant No.11001287the Natural Science Foundation Project of Chongqing(CSTC 2010BB9254)the Education Committee Project Research Foundation of Chongqing under Grant No.KJ100711
文摘In this paper, nonsmooth univex, nonsmooth quasiunivex, and nonsmooth pseudounivex functions are introduced. By utilizing these new concepts, sufficient optimality conditions for a weakly efficient solution of the nonsmooth multiobjective programming problem are established. Weak and strong duality theorems axe also derived for Mond-Weir type multiobjective dual programs.