Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the rel...Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.展开更多
A methodology for performance optimization of torque converters is put forward based on the one-dimensional (1D) flow model. It is found that the inaccuracy of 1D flow model for predicting hydraulic performance at the...A methodology for performance optimization of torque converters is put forward based on the one-dimensional (1D) flow model. It is found that the inaccuracy of 1D flow model for predicting hydraulic performance at the low speed ratio is mainly caused by the separation phenomenon at the stator cascade which is induced by large flow impinging at the pressure side of the stator blades. A semi-empirical separation model is presented and incorporated to the original 1D flow model. It is illustrated that the improved model is able to predict the circumferential velocity components accurately, which can be applied to performance optimization. Then, the Pareto front is obtained by using the genetic algorithm (GA) in order to inspect the coupled relationship among stalling impeller torque capacity, stalling torque ratio and efficiency. The efficiency is maximized on the premise that a target stalling impeller torque capacity and torque ratio are achieved. Finally, the optimized result is verified by the computational fluid dynamics(CFD) simulation, which indicates that the maximal efficiency is increased by 0.96%.展开更多
The quadratic rheology model considers the yield stress,viscous stress,turbulent stress and disperse stress,so it is used in this study to derive the velocity profile of debris flows.The quadratic model with the parab...The quadratic rheology model considers the yield stress,viscous stress,turbulent stress and disperse stress,so it is used in this study to derive the velocity profile of debris flows.The quadratic model with the parabolic eddy viscosity was numerically solved,and an analytical solution was derived for the quadratic model with a constant eddy viscosity.These two solutions were compared with the Arai-Takahashi model that excluded the viscous stress and the yield stress.The three models were tested by using 17 experiment cases of debris flows over rigid beds.The results prove that the quadratic model with parabolic and constant eddy viscosities is applicable to muddy and granular flows,whereas the Arai-Takahashi model tends to overestimate the flow velocity near the water surface if a plug-like layer exists.In addition,the von Karman constant and the zero-velocity elevation in the three models are related to sediment concentration.The von Karman constant decreases first and then increases as the sediment concentration increases.The zero-velocity elevation is below the bed surface,likely due to the invalidity of the non-slip boundary condition for the debris flows over fixed beds.展开更多
In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of t...In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of the evolution of space-time as well as an equation of state that retains all the infinitesimal terms. We find an explanation of the Hubble tension H<sub>0</sub>. Indeed, we have seen that this constant depends on the transceiver pair which can vary from the lowest observable value, from photons of the CMB (theoretical [km/s/Mpc]) to increasingly higher values depending on the earlier origin of the formation of the observed galaxy or cluster (ETG ~0.3 [Gy], ~74 [km/s/Mpc]). We have produced a theoretical table of the values of the constant according to the possible pairs of transmitter/receiver in the case where these galaxies follow the Hubble flow without large disturbance. The calculated theoretical values of the constant are in the order of magnitude of all values mentioned in past studies. Subsequently, we applied the models to 9 galaxies and COMA cluster and found that the models predict acceptable values of their distances and Hubble constant since these galaxies mainly follow the Hubble flow rather than the effects of a galaxy cluster or a group of clusters. In conclusion, we affirm that this Hubble tension does not really exist and it is rather the understanding of the meaning of this constant that is questioned.展开更多
A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to ...A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table.and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regar.ding the Dirichlet boundary condition, the Neumann boundary condition, the a.tmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-lD, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.展开更多
The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const...The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.展开更多
文摘Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.
基金National Natural Science Foundation of China(No. 51175379)
文摘A methodology for performance optimization of torque converters is put forward based on the one-dimensional (1D) flow model. It is found that the inaccuracy of 1D flow model for predicting hydraulic performance at the low speed ratio is mainly caused by the separation phenomenon at the stator cascade which is induced by large flow impinging at the pressure side of the stator blades. A semi-empirical separation model is presented and incorporated to the original 1D flow model. It is illustrated that the improved model is able to predict the circumferential velocity components accurately, which can be applied to performance optimization. Then, the Pareto front is obtained by using the genetic algorithm (GA) in order to inspect the coupled relationship among stalling impeller torque capacity, stalling torque ratio and efficiency. The efficiency is maximized on the premise that a target stalling impeller torque capacity and torque ratio are achieved. Finally, the optimized result is verified by the computational fluid dynamics(CFD) simulation, which indicates that the maximal efficiency is increased by 0.96%.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0902)National Natural Science Foundation of China(No.41601004 and 41702369)Scientific and Technological Project in Henan Province(No.212102310055).
文摘The quadratic rheology model considers the yield stress,viscous stress,turbulent stress and disperse stress,so it is used in this study to derive the velocity profile of debris flows.The quadratic model with the parabolic eddy viscosity was numerically solved,and an analytical solution was derived for the quadratic model with a constant eddy viscosity.These two solutions were compared with the Arai-Takahashi model that excluded the viscous stress and the yield stress.The three models were tested by using 17 experiment cases of debris flows over rigid beds.The results prove that the quadratic model with parabolic and constant eddy viscosities is applicable to muddy and granular flows,whereas the Arai-Takahashi model tends to overestimate the flow velocity near the water surface if a plug-like layer exists.In addition,the von Karman constant and the zero-velocity elevation in the three models are related to sediment concentration.The von Karman constant decreases first and then increases as the sediment concentration increases.The zero-velocity elevation is below the bed surface,likely due to the invalidity of the non-slip boundary condition for the debris flows over fixed beds.
文摘In this article we present a model of Hubble-Lemaître law using the notions of a transmitter (galaxy) and a receiver (MW) coupled to a model of the universe (Slow Bang Model, SB), based on a quantum approach of the evolution of space-time as well as an equation of state that retains all the infinitesimal terms. We find an explanation of the Hubble tension H<sub>0</sub>. Indeed, we have seen that this constant depends on the transceiver pair which can vary from the lowest observable value, from photons of the CMB (theoretical [km/s/Mpc]) to increasingly higher values depending on the earlier origin of the formation of the observed galaxy or cluster (ETG ~0.3 [Gy], ~74 [km/s/Mpc]). We have produced a theoretical table of the values of the constant according to the possible pairs of transmitter/receiver in the case where these galaxies follow the Hubble flow without large disturbance. The calculated theoretical values of the constant are in the order of magnitude of all values mentioned in past studies. Subsequently, we applied the models to 9 galaxies and COMA cluster and found that the models predict acceptable values of their distances and Hubble constant since these galaxies mainly follow the Hubble flow rather than the effects of a galaxy cluster or a group of clusters. In conclusion, we affirm that this Hubble tension does not really exist and it is rather the understanding of the meaning of this constant that is questioned.
基金supported by the National Basic Research Program of China (Grant No. 2010CB428802)Scholarship Award for Excellent Doctoral Students granted by Ministry of Education+1 种基金the Fundamental Research Funds for the Central Universitiesthe Ph. D. Candidates' Self-research Program of Wuhan University in 2008
文摘A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table.and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regar.ding the Dirichlet boundary condition, the Neumann boundary condition, the a.tmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-lD, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.
基金Project (2012CBA01202) supported by the National Basic Research Program of ChinaProject (51174184) supported by the National Natural Science Foundation of China+2 种基金Project (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of SciencesProject (BK2013030) supported by Science and Technology Plan of Nantong City,ChinaProject (RERU2014016) supported by Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,China
文摘The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.