期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Prediction of lime utilization ratio of dephosphorization in BOF steelmaking based on online sequential extreme learning machine with forgetting mechanism
1
作者 Runhao Zhang Jian Yang +1 位作者 Han Sun Wenkui Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期508-517,共10页
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me... The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction. 展开更多
关键词 basic oxygen furnace steelmaking machine learning lime utilization ratio DEPHOSPHORIZATION online sequential extreme learning machine forgetting mechanism
在线阅读 下载PDF
Online Sequential Extreme Multilayer Perception with Time Series Learning Machine Based Output Self Feedback for Prediction 被引量:5
2
作者 PAN Feng ZHAO Hai-bo 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第3期366-375,共10页
This study presents a time series prediction model with output self feedback which is implemented based on online sequential extreme learning machine. The output variables derived from multilayer perception can feedba... This study presents a time series prediction model with output self feedback which is implemented based on online sequential extreme learning machine. The output variables derived from multilayer perception can feedback to the network input layer to create a temporal relation between the current node inputs and the lagged node outputs while overcoming the limitation of memory which is a vital port for any time-series prediction application. The model can overcome the static prediction problem with most time series prediction models and can effectively cope with the dynamic properties of time series data. A linear and a nonlinear forecasting algorithms based on online extreme learning machine are proposed to implement the output feedback forecasting model. They are both recursive estimator and have two distinct phases: Predict and Update. The proposed model was tested against different kinds of time series data and the results indicate that the model outperforms the original static model without feedback. 展开更多
关键词 time series prediction extreme learning machine (ELM) autoregression (AR) online sequential learning ELM (os-elm recurrent neural network (RNN)
原文传递
Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine 被引量:2
3
作者 Lele CAO Fuchun SUN +1 位作者 Hongbo LI Wenbing HUANG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期276-289,共14页
Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine l... Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features. 展开更多
关键词 multi-kernel learning online learning extreme learning machine feature fusion robot recognition
原文传递
刮板输送机断链智能监测技术研究
4
作者 李灵锋 张洁 +2 位作者 陈茁 查天任 尹瑞 《工矿自动化》 北大核心 2025年第3期63-69,77,共8页
针对现有基于AI算法的煤矿井下刮板输送机断链监测技术在线学习能力低、检测精度差、稳定性低、复杂场景适应性和可靠性差等问题,通过在极限学习机(ELM)中增加增量式在线训练,设计了可实现离线样本和实时在线样本训练的在线贯序极限学习... 针对现有基于AI算法的煤矿井下刮板输送机断链监测技术在线学习能力低、检测精度差、稳定性低、复杂场景适应性和可靠性差等问题,通过在极限学习机(ELM)中增加增量式在线训练,设计了可实现离线样本和实时在线样本训练的在线贯序极限学习机(OSELM)网络,进而提出了基于OSELM的刮板输送机断链智能监测技术。将经过大量煤矿井下刮板输送机链条监控图像(离线样本)训练的OSELM网络算法写入AI摄像仪,将AI摄像仪安装于刮板输送机机尾,实时感知刮板输送机链条运行状态并进行在线学习,由AI摄像仪输出控制决策,并通过刮板输送机集中控制系统平台实时显示识别结果。井下工业性试验结果表明,OSELM网络具有较高的自主学习能力、较强的泛化性和鲁棒性,对刮板输送机断链识别的平均精度均值、准确率和精确率分别为98.6%,99.3%,91.7%,检测速度达205.6帧/s,整体效果优于深度神经网络融合网络、RT-DETR、YOLOv5、YOLOv8、ELM等模型,实现了刮板输送机链条状态的精准、实时检测。 展开更多
关键词 刮板输送机 链条状态识别 断链监测 AI摄像仪 在线贯序极限学习机网络
在线阅读 下载PDF
WOS-ELM算法在入侵检测中的研究 被引量:8
5
作者 康松林 刘楚楚 +2 位作者 樊晓平 李宏 杨宁 《小型微型计算机系统》 CSCD 北大核心 2015年第8期1779-1783,共5页
随着信息化建设的深入,网络攻击变得复杂多变,严重威胁着网络安全与信息安全.一个好的入侵检测系统往往要求具有高效性,高速性,智能性,实时性,以及应对不同网络环境在线数据的鲁棒性.基于以上五点要求,提出一种权值更新的在线贯序极限... 随着信息化建设的深入,网络攻击变得复杂多变,严重威胁着网络安全与信息安全.一个好的入侵检测系统往往要求具有高效性,高速性,智能性,实时性,以及应对不同网络环境在线数据的鲁棒性.基于以上五点要求,提出一种权值更新的在线贯序极限学习机算法(WOS-ELM)来应用于网络入侵检测.该算法采用一个一个数据或一块一块数据添加的增量学习算法,将多次迭代求解的神经网络训练转变为一次求解的线性方程组,并通过一种有效的权值赋予的方法来解决网络环境数据不均衡的问题.实验表明,该方法具有很高的正确率,并能在短时间内达到很好的分类效果;较之其他算法,它更适合处理大规模网络实时环境中大量的原始数据,对统计数据依赖性小,对不均衡数据分类具有较好的鲁棒性.因此,基于权值更新的在线贯序极限学习机算法更适应于复杂多变的网络环境下的入侵检测. 展开更多
关键词 网络入侵检测 在线贯序极限学习机 增量学习 权值更新 不均衡数据分类
在线阅读 下载PDF
基于集成OS-ELM的暂态稳定评估方法 被引量:17
6
作者 李扬 李国庆 +2 位作者 顾雪平 张艳军 韩子娇 《电工技术学报》 EI CSCD 北大核心 2015年第14期412-418,共7页
针对现有基于模式识别的暂态评估方法无法在线学习的不足,本文研究了一种基于集成在线序贯极限学习机(OS-ELM)的暂态稳定评估方法。首先,使用基于增量式学习的OS-ELM作为弱分类器,然后采用在线Boosting算法进行集成进一步提高评估模型... 针对现有基于模式识别的暂态评估方法无法在线学习的不足,本文研究了一种基于集成在线序贯极限学习机(OS-ELM)的暂态稳定评估方法。首先,使用基于增量式学习的OS-ELM作为弱分类器,然后采用在线Boosting算法进行集成进一步提高评估模型的稳定性和泛化能力,实现评估模型的在线更新。基于新英格兰39节点系统的算例结果验证了所提方法的有效性。 展开更多
关键词 暂态稳定评估 极限学习机 在线学习 集成学习 广域测量系统
在线阅读 下载PDF
基于改进OS-ELM的冷连轧在线轧制力预报 被引量:13
7
作者 魏立新 张宇 +1 位作者 孙浩 魏新宇 《计量学报》 CSCD 北大核心 2019年第1期111-116,共6页
冷轧轧制力预报结果直接影响板(带)材轧制精度和产品质量。冷轧工艺复杂,参数耦合性强,模型不易建立且与实际偏差较大,针对这些问题,提出一种改进在线序列极限学习机。在初始训练阶段使用量子粒子群算法优化权值和阈值;在线训练阶段根... 冷轧轧制力预报结果直接影响板(带)材轧制精度和产品质量。冷轧工艺复杂,参数耦合性强,模型不易建立且与实际偏差较大,针对这些问题,提出一种改进在线序列极限学习机。在初始训练阶段使用量子粒子群算法优化权值和阈值;在线训练阶段根据当前训练数据中隐含层对网络输出的贡献度调节网络的拓扑结构,实现了结构和参数的自组织,并结合极限学习机变形抗力子模型在线预报轧制力。实验结果表明,该自组织在线序列极限学习机在训练速度和精度方面较之人工蜂群优化的反向传播神经网络和基于增强型增量极限学习机有较大的提高。 展开更多
关键词 计量学 轧制力预报 在线序列极限学习机 在线结构自组织 变形抗力
在线阅读 下载PDF
基于OS-ELM的风速修正及短期风电功率预测 被引量:3
8
作者 张颖超 肖寅 +1 位作者 邓华 王璐 《电子技术应用》 北大核心 2016年第2期110-113,121,共5页
随着时间的推移,风电场风电功率预测模型的适用性逐渐降低,导致预测精度下降。为了解决该问题,基于在线序列-极限学习机(OS-ELM)算法提出了风电场短期风电功率预测模型的在线更新策略,建立的OS-ELM模型将风电场的历史数据固化到隐含层... 随着时间的推移,风电场风电功率预测模型的适用性逐渐降低,导致预测精度下降。为了解决该问题,基于在线序列-极限学习机(OS-ELM)算法提出了风电场短期风电功率预测模型的在线更新策略,建立的OS-ELM模型将风电场的历史数据固化到隐含层输出矩阵中,模型更新时,只需将新产生的数据对当前网络进行更新,大大降低了计算所需的资源。采用极限学习机(ELM)算法对数值天气预报(NWP)的预测风速进行修正,并根据风电功率的置信区间对预测功率进行二次修正。实验结果表明,采用OS-ELM算法更新后的模型适用性增强,预测精度提高;采用基于风电功率置信区间的功率修正模型后,风电功率的预测精度明显提高。 展开更多
关键词 在线序列-极限学习机 数值天气预报 风速修正 功率修正
在线阅读 下载PDF
面向生物氧化提金槽温度监测的数据融合策略
9
作者 李海龙 南新元 +1 位作者 蔡鑫 侯登云 《计算机工程与设计》 北大核心 2025年第1期282-289,共8页
为提高生物氧化槽温度估计的准确性,提出一种数据融合策略。利用鲁棒自适应无迹卡尔曼滤波算法对底层采集的数据进行处理,克服噪声对系统性能的影响。利用序贯自适应加权融合算法对滤波后的数据进行局部融合,保证融合结果的一致性与高... 为提高生物氧化槽温度估计的准确性,提出一种数据融合策略。利用鲁棒自适应无迹卡尔曼滤波算法对底层采集的数据进行处理,克服噪声对系统性能的影响。利用序贯自适应加权融合算法对滤波后的数据进行局部融合,保证融合结果的一致性与高精度。利用改进的斑马优化算法优化核极限学习机进行全局融合,提升算法的泛化能力与鲁棒性。实验结果表明,提出的融合方法能够提高生物氧化槽温度估计的精度,为后续的控制决策提供有力的数据保障。 展开更多
关键词 生物氧化提金 温度监测 多传感器数据融合 无迹卡尔曼滤波 序贯分析 自适应加权融合 核极限学习机
在线阅读 下载PDF
基于在线学习的离散时间人机协作系统预定性能柔顺控制
10
作者 刘霞 王露 陈勇 《电子科技大学学报》 北大核心 2025年第1期52-61,共10页
为了使人机协作系统中机器人能够准确地顺应人类行为,提出了一种基于在线学习的离散时间预定性能柔顺控制方法。该方法在外环采用在线顺序极限学习机算法估计人类行为,并将估计结果结合参考阻抗模型来重建参考轨迹。在内环建立了离散时... 为了使人机协作系统中机器人能够准确地顺应人类行为,提出了一种基于在线学习的离散时间预定性能柔顺控制方法。该方法在外环采用在线顺序极限学习机算法估计人类行为,并将估计结果结合参考阻抗模型来重建参考轨迹。在内环建立了离散时间预定性能控制器用于跟踪重建后的参考轨迹,并利用时间延迟估计来获得机器人复杂的未知动力学模型。分析了闭环系统的瞬态和稳态性能,通过对比仿真验证了该方法的有效性。所提的离散时间控制方法可更好地满足数字计算机的工作原理,在减少计算和内存负担的基础上,使得机器人末端执行器的跟踪误差能够满足预设性能要求。此外,该方法无需机器人精确的数学模型,同时还能减轻人类操作机器人的力量负担,保证人机协作的柔顺性。 展开更多
关键词 柔顺控制 离散时间人机协作系统 人类行为估计 在线顺序极限学习机 预定性能
在线阅读 下载PDF
基于Spark的OS-ELM并行化算法 被引量:2
11
作者 邓万宇 杨丽霞 《西安邮电大学学报》 2016年第2期101-104,118,共5页
针对Spark平台的弹性分布式数据集并行计算框架机制,提出一种在线连续极限学习机并行处理的改进算法。利用分离在线连续极限学习机矩阵之间的依赖关系,将大规模数据中的高度复杂的矩阵分布到Spark集群中并行化计算,并行计算多个增量数... 针对Spark平台的弹性分布式数据集并行计算框架机制,提出一种在线连续极限学习机并行处理的改进算法。利用分离在线连续极限学习机矩阵之间的依赖关系,将大规模数据中的高度复杂的矩阵分布到Spark集群中并行化计算,并行计算多个增量数据块的隐藏层输出矩阵,实现OS-ELM对矩阵的加速求解。实验结果表明,该算法在保持精度的同时可有效缩短学习时间,改善了大数据的扩展能力。 展开更多
关键词 在线连续极限学习机 大数据 SPARK 并行计算
在线阅读 下载PDF
基于双缓冲区的概念漂移检测方法
12
作者 李盟 温伍正宏 潘甦 《计算机技术与发展》 2025年第3期103-108,共6页
在数据分析中概念漂移问题是经常发生的,这导致了模型不能适应数据分布的动态变化。针对如何处理流数据中的概念漂移这一问题进行了研究,以提高数据分析性能。为此,在在线序列极限学习机(OS-ELM)与漂移检测方法(DDM)结合(DDM-OS-ELM)的... 在数据分析中概念漂移问题是经常发生的,这导致了模型不能适应数据分布的动态变化。针对如何处理流数据中的概念漂移这一问题进行了研究,以提高数据分析性能。为此,在在线序列极限学习机(OS-ELM)与漂移检测方法(DDM)结合(DDM-OS-ELM)的基础上,提出了双缓冲区(缓冲区A和缓冲区B)方法。DDM-OS-ELM通过结合漂移检测机制和在线序列极限学习机来处理概念漂移,这种方法在检测到概念漂移时就会触发模型更新,在检测过程中,通过双缓冲区解决概念漂移的问题。缓冲区A是解决发生概念漂移后数据量不足导致无法重新训练模型这一问题;缓冲区B收集发生概念漂移后的数据,使模型适应概念漂移后的数据分布。实验结果表明,利用双缓冲区不仅可以减少模型更新次数,还提高了模型预测的精度。 展开更多
关键词 概念漂移 双缓冲区 在线序列极限学习机 漂移检测机制 不确定数据流
在线阅读 下载PDF
故障预测下电能计量仪表参数优化控制研究
13
作者 伍莎莎 韦淑敏 +1 位作者 谢雄 郭芒 《自动化仪表》 2025年第2期80-84,91,共6页
电能计量仪表容易受到异常故障的干扰,使得参数控制过程失真。为此,提出了故障预测下电能计量仪表参数优化控制方法。采用层次聚类算法挖掘相关的故障数据,剔除数据挖掘结果中存在的异常数据。利用智能边缘计算技术,将故障数据输入在线... 电能计量仪表容易受到异常故障的干扰,使得参数控制过程失真。为此,提出了故障预测下电能计量仪表参数优化控制方法。采用层次聚类算法挖掘相关的故障数据,剔除数据挖掘结果中存在的异常数据。利用智能边缘计算技术,将故障数据输入在线贯序极限学习机中,对不同时刻的电能计量仪表故障开展精准预测。以预测结果为基础,引入多聚合方法确定故障预测约束下的相关控制参数,并结合动态平衡方程实现电能计量仪表参数优化控制。试验结果表明,所提方法的最优控制曲线与实际控制曲线几乎一致,电能计量仪表故障预测误差低,控制成功率高达98%。该方法有着广阔的应用前景。 展开更多
关键词 电能计量仪表 层次聚类算法 故障数据挖掘 异常数据剔除 在线贯序极限学习机 多聚合方法 动态平衡方程
在线阅读 下载PDF
基于RBF与OS-ELM神经网络的AUV传感器在线故障诊断 被引量:6
14
作者 段杰 李辉 +2 位作者 陈自立 龚时华 赵朝闻 《水下无人系统学报》 北大核心 2018年第2期157-165,184,共10页
传感器是自主式水下航行器(AUV)的重要组成部分,实时准确地对AUV传感器进行在线故障诊断,对提高AUV的安全性具有重要意义。文中通过对机器学习算法的分析,建立了基于径向基函数(RBF)神经网络的AUV传感器预测器,该预测器具有较高的实时... 传感器是自主式水下航行器(AUV)的重要组成部分,实时准确地对AUV传感器进行在线故障诊断,对提高AUV的安全性具有重要意义。文中通过对机器学习算法的分析,建立了基于径向基函数(RBF)神经网络的AUV传感器预测器,该预测器具有较高的实时性和准确性;在此基础上,首次将在线贯序学习机(OS-ELM)算法应用于传感器在线故障诊断,进一步提高了预测器的实时性和准确性。文中还利用某AUV传感器实航数据,分别对2种故障诊断模型进行了仿真和对比分析,结果表明,结合RBF神经网络算法的OS-ELM神经网络预测器,其预测精度和实时性较RBF神经网络预测器更高,而且性能更稳定,可为AUV控制系统各传感器在线故障诊断方案设计提供参考。 展开更多
关键词 自主式水下航行器(AUV) 径向基函数(RBF) 在线贯序学习机(os-elm) 神经网络 在线故障诊断 传感器
在线阅读 下载PDF
基于OS-ELM的光伏发电中长期功率预测 被引量:5
15
作者 钱子伟 孙毅超 +3 位作者 王琦 季顺祥 周敏 曾柏琛 《南京师范大学学报(工程技术版)》 CAS 2020年第1期8-14,共7页
为了进一步提高光伏出力预测的精度,提出了一种基于在线序列极限学习机的光伏发电中长期功率预测方法.结合在线序列极限学习机学习速度快、泛化能力强的特点,通过对大量气象数据和历史发电数据综合处理,对光伏发电系统的输出功率进行预... 为了进一步提高光伏出力预测的精度,提出了一种基于在线序列极限学习机的光伏发电中长期功率预测方法.结合在线序列极限学习机学习速度快、泛化能力强的特点,通过对大量气象数据和历史发电数据综合处理,对光伏发电系统的输出功率进行预测.同时,由于实时数据的不断输入,该方法能够对预测模型进行在线更新.算例仿真研究表明,该预测方法与反向传播神经网络、支持向量机方法相比,能够有效提高预测精度,满足在线应用的需求,具有较好的应用前景. 展开更多
关键词 光伏预测 相关性分析 在线序列极限学习机 数据更新
在线阅读 下载PDF
基于PCA-OS-ELM的大气PM_(2.5)浓度预测 被引量:8
16
作者 李济瀚 李晓理 +1 位作者 王康 崔桂梅 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第12期1262-1268,共7页
为了提高细颗粒物PM_(2.5)浓度预测精度,提出一种主元成分分析与在线序列极限学习机相结合(PCA-OS-ELM)的PM_(2.5)浓度预测方法.首先,通过主成分分析方法(PCA)提取高维大气数据中影响空气质量的关键变量,并去除不必要的冗余变量;其次,... 为了提高细颗粒物PM_(2.5)浓度预测精度,提出一种主元成分分析与在线序列极限学习机相结合(PCA-OS-ELM)的PM_(2.5)浓度预测方法.首先,通过主成分分析方法(PCA)提取高维大气数据中影响空气质量的关键变量,并去除不必要的冗余变量;其次,利用提取的关键变量建立在线序列极限学习机(OS-ELM)网络预测模型,将批处理和逐次迭代相结合,不断更新训练数据和网络参数实现大气PM_(2.5)浓度快速预测.研究结果表明,PCA-OS-ELM预测方法采用不同批次训练数据更新模型的方式,能够快速实现大气PM_(2.5)浓度预测,证明了该方法的有效性.与其他方法相比,该方法预测误差小,预测精度高,具有更好的实用价值. 展开更多
关键词 PM_(2.5) 主成分分析 相关性 在线序列极限学习机 预测
在线阅读 下载PDF
基于改进OS-ELM的煤矿微震事件在线识别方法 被引量:2
17
作者 丁琳琳 张明 +3 位作者 刘媛媛 张翰林 郝亚丽 潘一山 《煤炭科学技术》 CAS CSCD 北大核心 2020年第S02期233-239,共7页
煤矿微震事件是在采矿过程中发生的一种诱发地震,其中大能量的微震事件会引发冲击地压事故,是煤矿井下开采的危害之一。针对煤矿微震信号识别,现有微震事件识别方法仍然存在识别精度低、时延明显问题。为此,提出一种基于改进OS-ELM的煤... 煤矿微震事件是在采矿过程中发生的一种诱发地震,其中大能量的微震事件会引发冲击地压事故,是煤矿井下开采的危害之一。针对煤矿微震信号识别,现有微震事件识别方法仍然存在识别精度低、时延明显问题。为此,提出一种基于改进OS-ELM的煤矿微震事件在线识别方法,首先利用极值连接降维对原始微震数据进行预处理,将预处理之后的微震数据作为OS-ELM模型的输入,将OSELM训练得到的输出权值,作为下一次的更新信息,建立OS-ELM分类器模型,然后增加滑动窗口机制,实现对海量微震信号的在线分批训练和预测,从训练和预测方面提高速度和精度。试验结果表明,改进后的OS-ELM算法与OS-ELM和ELM分类算法相比,不仅能保持较好的训练和识别精度,同时大幅提高了运算速度。 展开更多
关键词 微震事件 预处理 在线顺序极限学习机 滑动窗口
在线阅读 下载PDF
基于EOS-ELM的高频地波雷达有效波高反演 被引量:2
18
作者 张晓愉 楚晓亮 王曙曜 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第S1期163-169,共7页
高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限... 高频地波雷达(HFSWR)海面回波谱中包含海态信息,通常基于一阶谱和二阶谱特征信息分别建立拟合模型来反演有效波高,但是单独利用一阶和二阶谱信息来反演波高,会分别存在一阶谱能量饱和和二阶谱信噪比低的问题。本文基于集成在线顺序极限学习机(EOS-ELM)的方法,利用高频地波雷达数据,综合考虑一阶谱和二阶谱的特征信息来进行有效波高的反演。学习机能够有效选择一阶谱和二阶谱信息,使结果达到最优化,从而提高有效波高的反演精度。针对低海况的数据,本文通过分析确定波高分类阈值,将数据分段进行波高反演,进一步提高了波高反演的精度。 展开更多
关键词 高频地波雷达 有效波高反演 集成在线顺序极限学习机(Eos-elm)
在线阅读 下载PDF
基于OS-ELM和SDAE的Wi-Fi入侵检测方法 被引量:3
19
作者 刘明峰 侯路 +2 位作者 郭顺森 韩然 赵宇飞 《北京交通大学学报》 CAS CSCD 北大核心 2019年第5期87-93,101,共8页
为解决大多数Wi-Fi网络入侵检测方法实时性差、误报率高等问题,提出一种基于在线序列极限学习机(OS-ELM)的实时Wi-Fi网络入侵检测系统模型.首先,考虑到实验样本数据中正常与异常数据极不平衡的问题,采用SMOTE算法对数据样本中的异常数... 为解决大多数Wi-Fi网络入侵检测方法实时性差、误报率高等问题,提出一种基于在线序列极限学习机(OS-ELM)的实时Wi-Fi网络入侵检测系统模型.首先,考虑到实验样本数据中正常与异常数据极不平衡的问题,采用SMOTE算法对数据样本中的异常数据和正常数据进行平衡处理操作,使分类器的分类效果不受样本数据集中多数类样本的影响.然后使用栈式降噪自编码网络(SDAE)对平衡后的数据进行降维,消除无关或冗余特征降低检测建模规模,避免维度灾难.最后,在AWID数据集进行处理并输入到OS-ELM分类器中,结果表明:与其他基于浅层学习算法的检测方法相比,所提方法可有效地精简数据特征,降低了检测时间,同时在检测精度和误报率方面也体现出了更优性能. 展开更多
关键词 在线序列极限学习机 栈式降噪自编码网络 数据降维 入侵检测 WI-FI网络
在线阅读 下载PDF
基于改进OS-ELM的电子鼻在线气体浓度检测 被引量:1
20
作者 朱梓涵 陶洋 梁志芳 《电子技术应用》 2023年第10期71-75,共5页
电子鼻是一种仿生传感系统,该设备能够同时对多种气体进行识别,因此应用在许多领域当中。气体浓度算法是电子鼻对气体定量分析时的核心部分,为了提高电子鼻浓度检测算法精度,提出一种基于在线序列极限学习机(Online Sequential-Extreme ... 电子鼻是一种仿生传感系统,该设备能够同时对多种气体进行识别,因此应用在许多领域当中。气体浓度算法是电子鼻对气体定量分析时的核心部分,为了提高电子鼻浓度检测算法精度,提出一种基于在线序列极限学习机(Online Sequential-Extreme Learning Machine,OS-ELM)的预测模型。该模型通过一维卷积神经网络(One Dimen‐sional Convolutional Neural Network,1DCNN)提取特征,使用OS-ELM对气体浓度进行预测,并提出了一种改进的粒子群(Particle Swarm Optimization,PSO)算法以克服OS-ELM需人工调整模型参数的问题。由理论分析,改进的算法比传统PSO算法有更强的搜索能力。实验结果表明,所提模型对气体的预测精度上较传统的预测模型具有更高的预测精度和泛化能力。 展开更多
关键词 电子鼻 浓度检测 一维卷积神经网络 在线序列极限学习机 粒子群算法
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部