This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connecte...This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. It can response the order within 1 ms. When fault occurs, the switch closes and the capacitors are bypassed, and the fault current is limited by the reactor. Simulation analysis and experiment show that the electromagnetic repulsion force actuator can meet the demand of fast closing switch, it is feasible to develop the FCL with low cost and high reliability.展开更多
A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron ...A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use.展开更多
The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reduc...The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL.展开更多
A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch...A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. When fault occurs, the switch closes and bypasses the capacitors, and the fault is limited by the reactor then. Simulated analysis and experiments show that it is feasible to develop the FCL with low cost and high reliability. The effectiveness of transient stability for power system is evaluated by digital simulation.展开更多
FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtai...FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtain optimal relay settings to achieve coordination in case of not installing DG, then depending on the achieved optimal obtained relay settings, FCL impedance is deduced to ensure relays coordination restoration in case of installing DG. Based on original optimal relay settings, obtained FCL impedance is not the minimum one required to achieve relay coordination. The contribution of this paper is the generation of multi sets of original relay settings that increase the possibility of finding FCL impedance of minimum value which is lower than the calculated value based on original optimal relay settings. The proposed method achieves better economic target by reducing FCL impedance. The proposed approach is implemented and tested on IEEE-39 bus test system.展开更多
This paper presents a multi-objective Pareto optimal method for allocation of fault current limiters based on an immune algorithm, which takes into account two objectives of the cost and fault current mitigation effec...This paper presents a multi-objective Pareto optimal method for allocation of fault current limiters based on an immune algorithm, which takes into account two objectives of the cost and fault current mitigation effect. A sensitivity factor calculation method based on the rate of fault current mitigation is proposed to reduce the search space and improve the efficiency of the algorithm.In this approach, the objective functions related to the cost and fault current mitigation effect are established. A modified inversion operator based on equal cost is proposed to converge to global optimal solutions more effectively. The proposed algorithm is tested on the IEEE39-bus system, and obtains the Pareto optimal solutions,from which the user can select the most suitable solutions according to the preferences and relative importance of the objective functions. Simulation results are used to verify the proposed method.展开更多
A common method to examine the current-limiting performance of saturated iron-core fault current limiter(SI-FCL) in high-voltage direct-current transmission based on voltage source converter(VSC-HVDC) systems is to so...A common method to examine the current-limiting performance of saturated iron-core fault current limiter(SI-FCL) in high-voltage direct-current transmission based on voltage source converter(VSC-HVDC) systems is to solve differential equations based on the system fault transient characteristics and the equivalent inductance calculation equation. This method analyzes the fault current of the VSC-HVDC system in the time domain. However, it is computationally complex and cannot directly reflect the relationship between parameters and the currentlimiting effect of the SI-FCL.In this paper,the relationship between the magnetic flux density and magnetic field energy of the SI-FCL is analyzed. The energy exchange between the DC capacitor and the SI-FCL in the DC short circuit fault process is analyzed. From the perspective of electromagnetic energy conversion, the criterion for determining the current-limiting ability of the SI-FCL in the transient process is given based on the parameters of the SI-FCL and VSC-HVDC system. On this basis, the characteristics of the DC side fault current and the capacitor voltage when the SI-FCL has current-limiting ability are examined.Based on the parameters of the SI-FCL and VSC-HVDC system, a method for calculating the fault current peak value and capacitor voltage drop time is given. Finally, the accuracy of the analysis of the SI-FCL in the VSC-HVDC system based on the electromagnetic energy conversion mechanism is demonstrated through a case study and simulation results of the VSC-HVDC system with different SI-FCLs.展开更多
To select the type and value of the impedance of fault current limiters(FCLs) for power network designers, we introduce a new method to calculate the optimum value of FCL impedance depending on its position in the n...To select the type and value of the impedance of fault current limiters(FCLs) for power network designers, we introduce a new method to calculate the optimum value of FCL impedance depending on its position in the network. Due to the complexity of its impedance, the costs of both real and imaginary parts of FCL impedance are considered. The optimization of FCL impedance is based on a goal function that maximizes the reduction of the fault current while minimizing the costs. While the position of FCL in the network has an effect on the calculation of the optimum impedance value, the method for selecting FCL location is not the focus of this study. The proposed method for optimizing FCL impedance can be used for every network that has symmetrical and/or asymmetrical faults. We use a 14-bus IEEE network as an example to explain the process. The optimum FCL impedance used in this network is calculated by considering the vast range of costs for both real and imaginary parts of FCL impedance.展开更多
A 500 kV high-voltage AC fault current limiter(FCL)based on a high coupled split reactor(HCSR)is pro-posed by the National key R&D project team.Low impedance under normal conditions and high impedance under short-...A 500 kV high-voltage AC fault current limiter(FCL)based on a high coupled split reactor(HCSR)is pro-posed by the National key R&D project team.Low impedance under normal conditions and high impedance under short-circuit conditions are accomplished by the cooperation of HCSR and high-speed switches.High-speed switches play an important role in current limiting processes,thus interruption characteristics of the high-speed switch in the 500 kV FCL are studied in this paper.The simulation model of the FCL and the external equivalent power grid are established.The short-circuit current and recovery voltage characteristics of the high-speed switch in FCL are simulated.The results show that maximum DC component of the short-circuit current of the high-speed switch reaches 91%,the maximum peak value is 118 kA,and the longest arcing time is 14.8 ms.There is a discontinuity in the curve of the short-circuit current peak and arcing time as a function of the short-circuit occurrence time;the peak recovery voltage of a single break of the high-speed switch has a maximum value of 87.5 kV under a three-phase ungrounded short-circuit condition,and the rate of rise of recovery voltage is o.22 kV/s.The recovery voltage peak shows a period change with the short-circuit occurrence time,and the period is 10 ms.The effects of the shunt capacitor value and short-circuit ground resistance on the recovery voltage of high-speed switching are also studied.The research can be used for reference by R&D personnel and testersof500kVFCLs.Index Terms-Fault current limiter(FCL),high coupled split reactor(HCSR),high-speed switch,interruption characteristics,short circuit current.展开更多
For meeting the increased demand of electrical power,distributed generation(DG)based on renewable energy resources(RERs),has become a potential alternative to large plants based on fossil fuels.The power from environm...For meeting the increased demand of electrical power,distributed generation(DG)based on renewable energy resources(RERs),has become a potential alternative to large plants based on fossil fuels.The power from environmentally friendly RERs is available at a competitive price due to technological advancements in recent times.Moreover,optimal allocation of DG at the distribution network(DN)level may result in power loss reduction,improvement in voltage profile and the network’s overall reliability.However,integration of DG may increase the short circuit(SC)level beyond the capacity of the protection gear,conductors,transformers and other components of a DN.The high short circuit currents(SCCs)may be reduced by application of a fault current limiter(FCL).However,most of the existing literature proposes optimization of FCLs size by considering only normal configurations of a DN.This approach is inappropriate as it may fail to produce the desired reduction in SCCs in different N−1 contingency scenarios.In this paper,a new strategy is presented that considers both normal as well as various contingency situations for optimal allocation of FCLs in a DN with DG connection.The strategy is implemented in the IEEE 30-bus system in a MATLAB environment using a genetic algorithm(GA).The simulation results prove that the proposed strategy is effective in determining the optimal FCLs size that restricts the SCCs to a safe level in different operating conditions including N−1 contingencies and thus,improves network safety and reliability.The strategy described in the paper can play an important role in DN planning involving optimal application of DG and FCLs.展开更多
A novel magnetic-controlled switcher type fault current limiter (FCL) for high voltage electric network is presented. The current limiting principle of the FCL and the bias current influence on the characteristic of...A novel magnetic-controlled switcher type fault current limiter (FCL) for high voltage electric network is presented. The current limiting principle of the FCL and the bias current influence on the characteristic of the FCL axe discussed. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively. Under the normal state, the bias current adjustment can change the FCL voltage loss; under the fault state, the steady fault current can be easily adjusted to the preset level by bias current regulating. The experimental result is in accordance with the principle analysis and the FCL has the advantages of flexible control strategy and simple and reliable structure.展开更多
已有限流器优化配置方法大多以电阻、电感型限流器为配置对象,且只考虑每条线路均配置限流器的工况,降低系统经济效益,因此提出一种计及新型柔性直流限流器(novel flexible fault current limiter,NFFCL)运行特性、位置、数量等因素的...已有限流器优化配置方法大多以电阻、电感型限流器为配置对象,且只考虑每条线路均配置限流器的工况,降低系统经济效益,因此提出一种计及新型柔性直流限流器(novel flexible fault current limiter,NFFCL)运行特性、位置、数量等因素的优化配置方法。首先基于换流站和NFFCL简化模型,构建含NFFCL直流系统故障电流计算模型,并在5节点直流系统验证其准确性;其次,以NFFCL成本、限流效果为目标函数,以断路器最大开断电流为约束条件,构建多目标优化配置模型,并对NSGA-Ⅱ算法中的拥挤度计算进行改进,以实现优化配置过程中NFFCL安装数量与容量的解耦;最后,采用改进拥挤度计算的NSGA-Ⅱ算法求解得到11节点直流系统的NFFCL优化配置方案,并通过限流器成本、安装数量、限流效果之间的关系选取最终方案。展开更多
文摘This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. It can response the order within 1 ms. When fault occurs, the switch closes and the capacitors are bypassed, and the fault current is limited by the reactor. Simulation analysis and experiment show that the electromagnetic repulsion force actuator can meet the demand of fast closing switch, it is feasible to develop the FCL with low cost and high reliability.
基金Major State Basic Research Development Program of China ( No.2005CB221505)Research Foundation for the Doctoral Programof Higher Education of China(No.20050248058)
文摘A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use.
基金supported by National Natural Science Foundation of China(Nos.51777025,52177131)the Interdisciplinary Program of the Wuhan National High Magnetic Field Center(No.WHMFC202130)Huazhong University of Science and Technology。
文摘The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL.
文摘A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. When fault occurs, the switch closes and bypasses the capacitors, and the fault is limited by the reactor then. Simulated analysis and experiments show that it is feasible to develop the FCL with low cost and high reliability. The effectiveness of transient stability for power system is evaluated by digital simulation.
文摘FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtain optimal relay settings to achieve coordination in case of not installing DG, then depending on the achieved optimal obtained relay settings, FCL impedance is deduced to ensure relays coordination restoration in case of installing DG. Based on original optimal relay settings, obtained FCL impedance is not the minimum one required to achieve relay coordination. The contribution of this paper is the generation of multi sets of original relay settings that increase the possibility of finding FCL impedance of minimum value which is lower than the calculated value based on original optimal relay settings. The proposed method achieves better economic target by reducing FCL impedance. The proposed approach is implemented and tested on IEEE-39 bus test system.
基金supported by National Natural Science Foundation of China(No.50807041)
文摘This paper presents a multi-objective Pareto optimal method for allocation of fault current limiters based on an immune algorithm, which takes into account two objectives of the cost and fault current mitigation effect. A sensitivity factor calculation method based on the rate of fault current mitigation is proposed to reduce the search space and improve the efficiency of the algorithm.In this approach, the objective functions related to the cost and fault current mitigation effect are established. A modified inversion operator based on equal cost is proposed to converge to global optimal solutions more effectively. The proposed algorithm is tested on the IEEE39-bus system, and obtains the Pareto optimal solutions,from which the user can select the most suitable solutions according to the preferences and relative importance of the objective functions. Simulation results are used to verify the proposed method.
基金supported in part by the National Key R&D Program of China (No. 2018YFB0904600)in part by the National Nature Science Foundation of China (NSFC) under Grant 51677125
文摘A common method to examine the current-limiting performance of saturated iron-core fault current limiter(SI-FCL) in high-voltage direct-current transmission based on voltage source converter(VSC-HVDC) systems is to solve differential equations based on the system fault transient characteristics and the equivalent inductance calculation equation. This method analyzes the fault current of the VSC-HVDC system in the time domain. However, it is computationally complex and cannot directly reflect the relationship between parameters and the currentlimiting effect of the SI-FCL.In this paper,the relationship between the magnetic flux density and magnetic field energy of the SI-FCL is analyzed. The energy exchange between the DC capacitor and the SI-FCL in the DC short circuit fault process is analyzed. From the perspective of electromagnetic energy conversion, the criterion for determining the current-limiting ability of the SI-FCL in the transient process is given based on the parameters of the SI-FCL and VSC-HVDC system. On this basis, the characteristics of the DC side fault current and the capacitor voltage when the SI-FCL has current-limiting ability are examined.Based on the parameters of the SI-FCL and VSC-HVDC system, a method for calculating the fault current peak value and capacitor voltage drop time is given. Finally, the accuracy of the analysis of the SI-FCL in the VSC-HVDC system based on the electromagnetic energy conversion mechanism is demonstrated through a case study and simulation results of the VSC-HVDC system with different SI-FCLs.
文摘To select the type and value of the impedance of fault current limiters(FCLs) for power network designers, we introduce a new method to calculate the optimum value of FCL impedance depending on its position in the network. Due to the complexity of its impedance, the costs of both real and imaginary parts of FCL impedance are considered. The optimization of FCL impedance is based on a goal function that maximizes the reduction of the fault current while minimizing the costs. While the position of FCL in the network has an effect on the calculation of the optimum impedance value, the method for selecting FCL location is not the focus of this study. The proposed method for optimizing FCL impedance can be used for every network that has symmetrical and/or asymmetrical faults. We use a 14-bus IEEE network as an example to explain the process. The optimum FCL impedance used in this network is calculated by considering the vast range of costs for both real and imaginary parts of FCL impedance.
基金supported by the National Key R&D Program of China(2018YFB0904300)。
文摘A 500 kV high-voltage AC fault current limiter(FCL)based on a high coupled split reactor(HCSR)is pro-posed by the National key R&D project team.Low impedance under normal conditions and high impedance under short-circuit conditions are accomplished by the cooperation of HCSR and high-speed switches.High-speed switches play an important role in current limiting processes,thus interruption characteristics of the high-speed switch in the 500 kV FCL are studied in this paper.The simulation model of the FCL and the external equivalent power grid are established.The short-circuit current and recovery voltage characteristics of the high-speed switch in FCL are simulated.The results show that maximum DC component of the short-circuit current of the high-speed switch reaches 91%,the maximum peak value is 118 kA,and the longest arcing time is 14.8 ms.There is a discontinuity in the curve of the short-circuit current peak and arcing time as a function of the short-circuit occurrence time;the peak recovery voltage of a single break of the high-speed switch has a maximum value of 87.5 kV under a three-phase ungrounded short-circuit condition,and the rate of rise of recovery voltage is o.22 kV/s.The recovery voltage peak shows a period change with the short-circuit occurrence time,and the period is 10 ms.The effects of the shunt capacitor value and short-circuit ground resistance on the recovery voltage of high-speed switching are also studied.The research can be used for reference by R&D personnel and testersof500kVFCLs.Index Terms-Fault current limiter(FCL),high coupled split reactor(HCSR),high-speed switch,interruption characteristics,short circuit current.
文摘For meeting the increased demand of electrical power,distributed generation(DG)based on renewable energy resources(RERs),has become a potential alternative to large plants based on fossil fuels.The power from environmentally friendly RERs is available at a competitive price due to technological advancements in recent times.Moreover,optimal allocation of DG at the distribution network(DN)level may result in power loss reduction,improvement in voltage profile and the network’s overall reliability.However,integration of DG may increase the short circuit(SC)level beyond the capacity of the protection gear,conductors,transformers and other components of a DN.The high short circuit currents(SCCs)may be reduced by application of a fault current limiter(FCL).However,most of the existing literature proposes optimization of FCLs size by considering only normal configurations of a DN.This approach is inappropriate as it may fail to produce the desired reduction in SCCs in different N−1 contingency scenarios.In this paper,a new strategy is presented that considers both normal as well as various contingency situations for optimal allocation of FCLs in a DN with DG connection.The strategy is implemented in the IEEE 30-bus system in a MATLAB environment using a genetic algorithm(GA).The simulation results prove that the proposed strategy is effective in determining the optimal FCLs size that restricts the SCCs to a safe level in different operating conditions including N−1 contingencies and thus,improves network safety and reliability.The strategy described in the paper can play an important role in DN planning involving optimal application of DG and FCLs.
基金the National Basic Research Program(973) of China (No. 2005CB221505)the Research Fund for Doctoral Program of High Education of China(No. 20050248058)
文摘A novel magnetic-controlled switcher type fault current limiter (FCL) for high voltage electric network is presented. The current limiting principle of the FCL and the bias current influence on the characteristic of the FCL axe discussed. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively. Under the normal state, the bias current adjustment can change the FCL voltage loss; under the fault state, the steady fault current can be easily adjusted to the preset level by bias current regulating. The experimental result is in accordance with the principle analysis and the FCL has the advantages of flexible control strategy and simple and reliable structure.
文摘已有限流器优化配置方法大多以电阻、电感型限流器为配置对象,且只考虑每条线路均配置限流器的工况,降低系统经济效益,因此提出一种计及新型柔性直流限流器(novel flexible fault current limiter,NFFCL)运行特性、位置、数量等因素的优化配置方法。首先基于换流站和NFFCL简化模型,构建含NFFCL直流系统故障电流计算模型,并在5节点直流系统验证其准确性;其次,以NFFCL成本、限流效果为目标函数,以断路器最大开断电流为约束条件,构建多目标优化配置模型,并对NSGA-Ⅱ算法中的拥挤度计算进行改进,以实现优化配置过程中NFFCL安装数量与容量的解耦;最后,采用改进拥挤度计算的NSGA-Ⅱ算法求解得到11节点直流系统的NFFCL优化配置方案,并通过限流器成本、安装数量、限流效果之间的关系选取最终方案。