期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel power system reconfiguration for a distribution system with minimum load balancing index using bacterial foraging optimization algorithm 被引量:2
1
作者 K. Sathish KUMAR T. JAYABARATHI 《Frontiers in Energy》 SCIE CSCD 2012年第3期260-265,共6页
In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formu... In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution. 展开更多
关键词 bacterial foraging optimization algorithm(BFOA) distribution system network reconfiguration load balancing index (LBI) radial network
原文传递
An Efcient Genetic Hybrid PAPR Technique for 5G Waveforms 被引量:1
2
作者 Arun Kumar Mahmoud A.Albreem +3 位作者 Mohammed H.Alsharif Abu Jahid Peerapong Uthansakul Jamel Nebhen 《Computers, Materials & Continua》 SCIE EI 2021年第6期3283-3292,共10页
Non-orthogonal multiple access(NOMA)is a strong contender multicarrier waveform technique for the fth generation(5G)communication system.The high peak-to-average power ratio(PAPR)is a serious concern in designing the ... Non-orthogonal multiple access(NOMA)is a strong contender multicarrier waveform technique for the fth generation(5G)communication system.The high peak-to-average power ratio(PAPR)is a serious concern in designing the NOMA waveform.However,the arrangement of NOMA is different from the orthogonal frequency division multiplexing.Thus,traditional reduction methods cannot be applied to NOMA.A partial transmission sequence(PTS)is commonly utilized to minimize the PAPR of the transmitting NOMA symbol.The choice phase aspect in the PTS is the only non-linear optimization obstacle that creates a huge computational complication due to the respective non-carrying sub-blocks in the unitary NOMA symbol.In this study,an efcient phase factor is proposed by presenting a novel bacterial foraging optimization algorithm(BFOA)for PTS(BFOA-PTS).The PAPR minimization is accomplished in a two-stage process.In the initial stage,PTS is applied to the NOMA signal,resulting in the partition of the NOMA signal into an act of sub-blocks.In the second stage,the best phase factor is generated using BFOA.The performance of the proposed BFOA-PTS is thoroughly investigated and compared to the traditional PTS.The simulation outcomes reveal that the BFOA-PTS efciently optimizes the PAPR performance with inconsequential complexity.The proposed method can signicantly offer a gain of 4.1 dB and low complexity compared with the traditional OFDM. 展开更多
关键词 Wireless networks 5G non-orthogonal multiple access peak to average power ratio partial transmission sequence bacterial foraging optimization algorithm
在线阅读 下载PDF
Satellite Image Classification Using a Hybrid Manta Ray Foraging Optimization Neural Network
3
作者 Amit Kumar Rai Nirupama Mandal +1 位作者 Krishna Kant Singh Ivan Izonin 《Big Data Mining and Analytics》 EI CSCD 2023年第1期44-54,共11页
A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious ta... A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious task due to the amount of data and the heterogeneity of the data.Thus,in this paper,a Radial Basis Function Neural Network(RBFNN)trained using Manta Ray Foraging Optimization algorithm(MRFO)is proposed.RBFNN is a three-layer network comprising of input,output,and hidden layers that can process large amounts.The trained network can discover hidden data patterns in unseen data.The learning algorithm and seed selection play a vital role in the performance of the network.The seed selection is done using the spectral indices to further improve the performance of the network.The manta ray foraging optimization algorithm is inspired by the intelligent behaviour of manta rays.It emulates three unique foraging behaviours namelys chain,cyclone,and somersault foraging.The satellite images contain enormous amount of data and thus require exploration in large search space.The spiral movement of the MRFO algorithm enables it to explore large search spaces effectively.The proposed method is applied on pre and post flooding Landsat 8 Operational Land Imager(OLI)images of New Brunswick area.The method was applied to identify and classify the land cover changes in the area induced by flooding.The images are classified using the proposed method and a change map is developed using post classification comparison.The change map shows that a large amount of agricultural area was washed away due to flooding.The measurement of the affected area in square kilometres is also performed for mitigation activities.The results show that post flooding the area covered by water is increased whereas the vegetated area is decreased.The performance of the proposed method is done with existing state-of-the-art methods. 展开更多
关键词 Radial Basis Function Neural Network(RBFNN) Manta Ray foraging Optimization algorithm(MRFO) Landsat 8 classification change detection disaster mitigation PLANNING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部