In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is take...In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.展开更多
A low order nonconforming mixed finite element method(FEM)is established for the fully coupled non-stationary incompressible magnetohydrodynamics(MHD)problem in a bounded domain in 3D.The lowest order finite elements ...A low order nonconforming mixed finite element method(FEM)is established for the fully coupled non-stationary incompressible magnetohydrodynamics(MHD)problem in a bounded domain in 3D.The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure,the velocity field and the magnetic field,in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by H^(1)(Ω)-conforming finite elements,respectively.The existence and uniqueness of the approximate solutions are shown.Optimal order error estimates of L^(2)(H^(1))-norm for the velocity field,L^(2)(L^(2))-norm for the pressure and the broken L^(2)(H^(1))-norm for the magnetic field are derived.展开更多
In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth- ods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presen...In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth- ods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presented and the optimal order error estimates are obtained under the hypothesis of the finite length of the free boundary. Numerical results are provided to illustrate the correctness of theoretical analysis.展开更多
The main aim of this paper is to show that the quadrilateral mesh condition RDP(N, ψ) is only sufficient but not necessary for the optimal order error estimate of the Q isoparametric element in the Hi norm.
For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,cha...For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,characteristic method,calculus of variations,energy method,negative norm estimate,two kinds of test functions and the theory of prior estimates and techniques.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.These methods have been successfully used in oil-gas resources estimation,enhanced oil recovery simulation and seawater intrusion numerical simulation.展开更多
In this paper,numerical analysis is carried out for a class of history-dependent variationalhemivariational inequalities by arising in contact problems.Three different numerical treatments for temporal discretization ...In this paper,numerical analysis is carried out for a class of history-dependent variationalhemivariational inequalities by arising in contact problems.Three different numerical treatments for temporal discretization are proposed to approximate the continuous model.Fixed-point iteration algorithms are employed to implement the implicit scheme and the convergence is proved with a convergence rate independent of the time step-size and mesh grid-size.A special temporal discretization is introduced for the history-dependent operator,leading to numerical schemes for which the unique solvability and error bounds for the temporally discrete systems can be proved without any restriction on the time step-size.As for spatial approximation,the finite element method is applied and an optimal order error estimate for the linear element solutions is provided under appropriate regularity assumptions.Numerical examples are presented to illustrate the theoretical results.展开更多
文摘In this article, a new stable nonconforming mixed finite element scheme is proposed for the stationary Navier-Stokes equations, in which a new low order Crouzeix- Raviart type nonconforming rectangular element is taken for approximating space for the velocity and the piecewise constant element for the pressure. The optimal order error estimates for the approximation of both the velocity and the pressure in L2-norm are established, as well as one in broken H1-norm for the velocity. Numerical experiments are given which are consistent with our theoretical analysis.
基金supported by the National Natural Science Foundations of China(Grant No.12071443)。
文摘A low order nonconforming mixed finite element method(FEM)is established for the fully coupled non-stationary incompressible magnetohydrodynamics(MHD)problem in a bounded domain in 3D.The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure,the velocity field and the magnetic field,in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by H^(1)(Ω)-conforming finite elements,respectively.The existence and uniqueness of the approximate solutions are shown.Optimal order error estimates of L^(2)(H^(1))-norm for the velocity field,L^(2)(L^(2))-norm for the pressure and the broken L^(2)(H^(1))-norm for the magnetic field are derived.
文摘In this paper, anisotropic Crouzeix-Raviart type nonconforming finite element meth- ods are considered for solving the second order variational inequality with displacement obstacle. The convergence analysis is presented and the optimal order error estimates are obtained under the hypothesis of the finite length of the free boundary. Numerical results are provided to illustrate the correctness of theoretical analysis.
基金This research is supported by the National Science Fbundation of China(No.10371113).
文摘The main aim of this paper is to show that the quadrilateral mesh condition RDP(N, ψ) is only sufficient but not necessary for the optimal order error estimate of the Q isoparametric element in the Hi norm.
基金This research is supported by the Major State Research Program of China(Grant No.19990328),the National Natural Sciences Foundation of China(Grant Nos.19871051 and 19972039),the National Tackling Key Problems Program and the Doctorate Foundation of the S
文摘For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,characteristic method,calculus of variations,energy method,negative norm estimate,two kinds of test functions and the theory of prior estimates and techniques.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.These methods have been successfully used in oil-gas resources estimation,enhanced oil recovery simulation and seawater intrusion numerical simulation.
基金supported by National Natural Science Foundation of China(Grant Nos.11671098 and 91630309)Higher Education Discipline Innovation Project(111 Project)(Grant No.B08018)Institute of Scientific Computation and Financial Data Analysis,Shanghai University of Finance and Economics for the support during his visit。
文摘In this paper,numerical analysis is carried out for a class of history-dependent variationalhemivariational inequalities by arising in contact problems.Three different numerical treatments for temporal discretization are proposed to approximate the continuous model.Fixed-point iteration algorithms are employed to implement the implicit scheme and the convergence is proved with a convergence rate independent of the time step-size and mesh grid-size.A special temporal discretization is introduced for the history-dependent operator,leading to numerical schemes for which the unique solvability and error bounds for the temporally discrete systems can be proved without any restriction on the time step-size.As for spatial approximation,the finite element method is applied and an optimal order error estimate for the linear element solutions is provided under appropriate regularity assumptions.Numerical examples are presented to illustrate the theoretical results.