Multi-photon polymerization is a well-established,yet actively developing,additive manufacturing technique for 3D printing on the micro/nanoscale.Like all additive manufacturing techniques,determining the process para...Multi-photon polymerization is a well-established,yet actively developing,additive manufacturing technique for 3D printing on the micro/nanoscale.Like all additive manufacturing techniques,determining the process parameters necessary to achieve dimensional accuracy for a structure 3D printed using this method is not always straightforward and can require time-consuming experimentation.In this work,an active machine learning based framework is presented for determining optimal process parameters for the recently developed,high-speed,layer-by-layer continuous projection 3D printing process.The proposed active learning framework uses Bayesian optimization to inform optimal experimentation in order to adaptively collect the most informative data for effective training of a Gaussian-process-regression-based machine learning model.This model then serves as a surrogate for the manufacturing process:predicting optimal process parameters for achieving a target geometry,e.g,the 2D geometry of each printed layer.Three representative 2D shapes at three different scales are used as test cases.In each case,the active learning framework improves the geometric accuracy,with drastic reductions of the errors to within the measurement accuracy in just four iterations of the Bayesian optimization using only a few hundred of total training data.The case studies indicate that the active learning framework developed in this work can be broadly applied to other additive manufacturing processes to increase accuracy with significantly reduced experimental data collection effortforoptimization.展开更多
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated opt...Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.展开更多
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi...To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In this paper,we investigate the application of the Unmanned Aerial Vehicle(UAV)-enabled relaying system in emergency communications,where one UAV is applied as a relay to help transmit information from ground users t...In this paper,we investigate the application of the Unmanned Aerial Vehicle(UAV)-enabled relaying system in emergency communications,where one UAV is applied as a relay to help transmit information from ground users to a Base Station(BS).We maximize the total transmitted data from the users to the BS,by optimizing the user communication scheduling and association along with the power allocation and the trajectory of the UAV.To solve this non-convex optimization problem,we propose the traditional Convex Optimization(CO)and the Reinforcement Learning(RL)-based approaches.Specifically,we apply the block coordinate descent and successive convex approximation techniques in the CO approach,while applying the soft actor-critic algorithm in the RL approach.The simulation results show that both approaches can solve the proposed optimization problem and obtain good results.Moreover,the RL approach establishes emergency communications more rapidly than the CO approach once the training process has been completed.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during c...Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA.展开更多
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users....Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst...Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems.展开更多
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt...Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.展开更多
To the Editor:The prevalence of high myopia(HM)has been increasing globally,particularly in the young Chinese population.[1]Most early investigations on ocular biometric parameters in myopic individuals focused primar...To the Editor:The prevalence of high myopia(HM)has been increasing globally,particularly in the young Chinese population.[1]Most early investigations on ocular biometric parameters in myopic individuals focused primarily on children,adolescents,and elderly individuals with cataracts,leaving a dearth of research on ocular biometric parameters among young adults with HM.Additionally,the associations between ocular biometric parameters and axial length(AL)in individuals with HM are unclear.[2,3]Therefore,understanding the ocular biometric characteristics of young Chinese individuals with HM and their correlations with AL is crucial.展开更多
The press-fit connector is a typical plug-and-play solderless connection,and it is widely used in signal transmission in fields such as communication and automotive devices.This paper focuses on inverse designing and ...The press-fit connector is a typical plug-and-play solderless connection,and it is widely used in signal transmission in fields such as communication and automotive devices.This paper focuses on inverse designing and optimization of geometric structure,as well as insertion-withdrawal forces of press-fit connector using artificial neural network(ANN)-assisted optimization method.The ANN model is established to approximate the relationship between geometric parameters and insertion-withdrawal forces,of which hyper-parameters of neural network are optimized to improve model performance.Two numerical methods are proposed for inverse designing structural parameters(Model-I)and multi-objective optimization of insertion-withdrawal forces(Model-II)of press-fit connector.In Model-I,a method for inverse designing structure parameters is established,of which an ANN model is coupled with single-objective optimization algorithm.The objective function is established,the inverse problem is solved,and effectiveness is verified.In Model-II,a multi-objective optimization method is proposed,of which an ANN model is coupled with genetic algorithm.The Pareto solution sets of insertion-withdrawal forces are obtained,and results are analyzed.The established ANN-coupled numerical optimization methods are beneficial for improving the design efficiency,and enhancing the connection reliability of the press-fit connector.展开更多
The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varyin...The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varying dynamics,making the exact solutions challenging to obtain.As a result,numerical integration methods are typically employed.However,conventional methods often suffer from low computational efficiency.To address this,this paper explores the application of the parameter freezing precise exponential integrator to vehicle-road coupling models.The model accounts for road roughness irregularities,incorporating all terms unrelated to the linear part into the algorithm's inhomogeneous vector.The general construction process of the algorithm is detailed.The validity of numerical results is verified through approximate analytical solutions(AASs),and the advantages of this method over traditional numerical integration methods are demonstrated.Multiple parameter freezing precise exponential integrator schemes are constructed based on the Runge-Kutta framework,with the fourth-order four-stage scheme identified as the optimal one.The study indicates that this method can quickly and accurately capture the dynamic system's vibration response,offering a new,efficient approach for numerical studies of high-dimensional vehicle-road coupling systems.展开更多
[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key ...[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.展开更多
Due to the high-order B-spline basis functions utilized in isogeometric analysis(IGA)and the repeatedly updating global stiffness matrix of topology optimization,Isogeometric topology optimization(ITO)intrinsically su...Due to the high-order B-spline basis functions utilized in isogeometric analysis(IGA)and the repeatedly updating global stiffness matrix of topology optimization,Isogeometric topology optimization(ITO)intrinsically suffers from the computationally demanding process.In this work,we address the efficiency problem existing in the assembling stiffness matrix and sensitivity analysis using B˙ezier element stiffness mapping.The Element-wise and Interaction-wise parallel computing frameworks for updating the global stiffness matrix are proposed for ITO with B˙ezier element stiffness mapping,which differs from these ones with the traditional Gaussian integrals utilized.Since the explicit stiffness computation formula derived from B˙ezier element stiffness mapping possesses a typical parallel structure,the presented GPU-enabled ITO method can greatly accelerate the computation speed while maintaining its high memory efficiency unaltered.Numerical examples demonstrate threefold speedup:1)the assembling stiffness matrix is accelerated by 10×maximumly with the proposed GPU strategy;2)the solution efficiency of a sparse linear system is enhanced by up to 30×with Eigen replaced by AMGCL;3)the efficiency of sensitivity analysis is promoted by 100×with GPU applied.Therefore,the proposed method is a promising way to enhance the numerical efficiency of ITO for both single-patch and multiple-patch design problems.展开更多
With the adjustment of the energy structure and the rapid development of commercial complex buildings,building energy systems(BES)are playing an increasingly important role.To fully utilize smart building management t...With the adjustment of the energy structure and the rapid development of commercial complex buildings,building energy systems(BES)are playing an increasingly important role.To fully utilize smart building management techniques for coordinating and optimizing energy systems while limiting carbon emissions,this study proposes a smart building energy scheduling method based on distributionally robust optimization(DRO).First,a framework for day-ahead market interaction between the distribution grid(DG),buildings,and electric vehicles(EVs)is established.Based on the the price elasticity matrix principle,demand side management(DSM)technology is used to model the price-based demand response(PBDR)of building electricity load.Meanwhile,the thermal inertia and thermal load flexibility of the building heating system are utilized to leverage the energy storage capabilities of the heating system.Second,a Wasserstein DRO Stackelberg game model is constructed with the objective of maximizing the benefits for both buildings and EVs.This Wasserstein distributionally robust model is then transformed into a mixed-integer model by combining the Karush–Kuhn–Tucker(KKT)conditions and duality theory.Finally,the optimization effect of temperature load storage characteristics on BES flexible scheduling and the coordination of DRO indicators on the optimization results were verified through simulations.The strategy proposed in this article can reduce the total operating cost of BES by 26.37%,significantly enhancing economic efficiency and achieving electricity and heat substitution,resulting in a smoother load curve.This study provides a theoretical foundation and assurance for optimal daily energy scheduling of BES.展开更多
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ...In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error.展开更多
基金supported by the National Science Foundation(NSF)through grant numbers CMMI-2135585 and CMMI-2229143J.EJ.acknowledges the National Science Foundation for support under the Graduate Research Fellowship Program(GRFP)under grant number DGE-1842166.
文摘Multi-photon polymerization is a well-established,yet actively developing,additive manufacturing technique for 3D printing on the micro/nanoscale.Like all additive manufacturing techniques,determining the process parameters necessary to achieve dimensional accuracy for a structure 3D printed using this method is not always straightforward and can require time-consuming experimentation.In this work,an active machine learning based framework is presented for determining optimal process parameters for the recently developed,high-speed,layer-by-layer continuous projection 3D printing process.The proposed active learning framework uses Bayesian optimization to inform optimal experimentation in order to adaptively collect the most informative data for effective training of a Gaussian-process-regression-based machine learning model.This model then serves as a surrogate for the manufacturing process:predicting optimal process parameters for achieving a target geometry,e.g,the 2D geometry of each printed layer.Three representative 2D shapes at three different scales are used as test cases.In each case,the active learning framework improves the geometric accuracy,with drastic reductions of the errors to within the measurement accuracy in just four iterations of the Bayesian optimization using only a few hundred of total training data.The case studies indicate that the active learning framework developed in this work can be broadly applied to other additive manufacturing processes to increase accuracy with significantly reduced experimental data collection effortforoptimization.
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
基金sponsored by the National Natural Science Foundation of China(Grant No.52405443)the Technology Research and Development Plan of China Railway(Grant No.N2023G063)the Fund of China Academy of Railway Sciences Corporation Limited(Grant No.2023YJ054).
文摘Purpose–To investigate the influence of vehicle operation speed,curve geometry parameters and rail profile parameters on wheel–rail creepage in high-speed railway curves and propose a multi-parameter coordinated optimization strategy to reduce wheel–rail contact fatigue damage.Design/methodology/approach–Taking a small-radius curve of a high-speed railway as the research object,field measurements were conducted to obtain track parameters and wheel–rail profiles.A coupled vehicle-track dynamics model was established.Multiple numerical experiments were designed using the Latin Hypercube Sampling method to extract wheel-rail creepage indicators and construct a parameter-creepage response surface model.Findings–Key service parameters affecting wheel–rail creepage were identified,including the matching relationship between curve geometry and vehicle speed and rail profile parameters.The influence patterns of various parameters on wheel–rail creepage were revealed through response surface analysis,leading to the establishment of parameter optimization criteria.Originality/value–This study presents the systematic investigation of wheel–rail creepage characteristics under multi-parameter coupling in high-speed railway curves.A response surface-based parameter-creepage relationship model was established,and a multi-parameter coordinated optimization strategy was proposed.The research findings provide theoretical guidance for controlling wheel–rail contact fatigue damage and optimizing wheel–rail profiles in high-speed railway curves.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706704)the Academician Special Science Research Project of CCCC(No.YSZX-03-2022-01-B).
文摘To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金supported in part by the Shenzhen Basic Research Project under Grant JCYJ20220531103008018 and Grant 20200812112423002in part by the Guangdong Basic Research Program under Grant 2019A1515110358,2021A1515012097in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2021D16)。
文摘In this paper,we investigate the application of the Unmanned Aerial Vehicle(UAV)-enabled relaying system in emergency communications,where one UAV is applied as a relay to help transmit information from ground users to a Base Station(BS).We maximize the total transmitted data from the users to the BS,by optimizing the user communication scheduling and association along with the power allocation and the trajectory of the UAV.To solve this non-convex optimization problem,we propose the traditional Convex Optimization(CO)and the Reinforcement Learning(RL)-based approaches.Specifically,we apply the block coordinate descent and successive convex approximation techniques in the CO approach,while applying the soft actor-critic algorithm in the RL approach.The simulation results show that both approaches can solve the proposed optimization problem and obtain good results.Moreover,the RL approach establishes emergency communications more rapidly than the CO approach once the training process has been completed.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)No.IPOC2021ZT10BUPT Excellent Ph.D.Students Foundation(Grant No.CX2023207)the BUPT innovation and entrepreneurship support program No.2024-YC-A188。
文摘Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA.
基金supported by National Key Research and Development Program of China(2022YFB4201003)the National Natural Science Foundation of China(52278104 and 52108076)the Science and Technology Innovation Program of Hunan Province(2023RC1042).
文摘Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
文摘Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems.
文摘Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.
基金supported by the Science and Technology Innovation Program of Socialization Investment of Hunan Province(No.2020SKC2002).
文摘To the Editor:The prevalence of high myopia(HM)has been increasing globally,particularly in the young Chinese population.[1]Most early investigations on ocular biometric parameters in myopic individuals focused primarily on children,adolescents,and elderly individuals with cataracts,leaving a dearth of research on ocular biometric parameters among young adults with HM.Additionally,the associations between ocular biometric parameters and axial length(AL)in individuals with HM are unclear.[2,3]Therefore,understanding the ocular biometric characteristics of young Chinese individuals with HM and their correlations with AL is crucial.
基金supported by the National Natural Science Foundation of China(No.52005378)the opening project fund of Materials Service Safety Assessment Facilities(No.MSAF-2021-107).
文摘The press-fit connector is a typical plug-and-play solderless connection,and it is widely used in signal transmission in fields such as communication and automotive devices.This paper focuses on inverse designing and optimization of geometric structure,as well as insertion-withdrawal forces of press-fit connector using artificial neural network(ANN)-assisted optimization method.The ANN model is established to approximate the relationship between geometric parameters and insertion-withdrawal forces,of which hyper-parameters of neural network are optimized to improve model performance.Two numerical methods are proposed for inverse designing structural parameters(Model-I)and multi-objective optimization of insertion-withdrawal forces(Model-II)of press-fit connector.In Model-I,a method for inverse designing structure parameters is established,of which an ANN model is coupled with single-objective optimization algorithm.The objective function is established,the inverse problem is solved,and effectiveness is verified.In Model-II,a multi-objective optimization method is proposed,of which an ANN model is coupled with genetic algorithm.The Pareto solution sets of insertion-withdrawal forces are obtained,and results are analyzed.The established ANN-coupled numerical optimization methods are beneficial for improving the design efficiency,and enhancing the connection reliability of the press-fit connector.
基金Supported by the National Natural Science Foundation of China(No.U22A20246)the Key Project of Natural Science Foundation of Hebei Province of China(Basic Research Base Project)(No.A2023210064)the Science and Technology Program of Hebei Province of China(Nos.246Z1904G and 225676162GH)。
文摘The vehicle-road coupling dynamics problem is a prominent issue in transportation,drawing significant attention in recent years.These dynamic equations are characterized by high-dimensionality,coupling,and time-varying dynamics,making the exact solutions challenging to obtain.As a result,numerical integration methods are typically employed.However,conventional methods often suffer from low computational efficiency.To address this,this paper explores the application of the parameter freezing precise exponential integrator to vehicle-road coupling models.The model accounts for road roughness irregularities,incorporating all terms unrelated to the linear part into the algorithm's inhomogeneous vector.The general construction process of the algorithm is detailed.The validity of numerical results is verified through approximate analytical solutions(AASs),and the advantages of this method over traditional numerical integration methods are demonstrated.Multiple parameter freezing precise exponential integrator schemes are constructed based on the Runge-Kutta framework,with the fourth-order four-stage scheme identified as the optimal one.The study indicates that this method can quickly and accurately capture the dynamic system's vibration response,offering a new,efficient approach for numerical studies of high-dimensional vehicle-road coupling systems.
基金Supported by Central Guided Local Science and Technology Development Funds(ZY20230102)Guilin Scientific Research and Technology Development Programme Project(2023010301-1,20220104-4)+1 种基金Guangxi Science and Technology Programme Project(GK AB24010263)Guangxi Innovation Driving Development Special Funds Project(GK AA22096020).
文摘[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.
基金supported by the National Key R&D Program of China(2023YFB2504601)National Natural Science Foundation of China(52205267).
文摘Due to the high-order B-spline basis functions utilized in isogeometric analysis(IGA)and the repeatedly updating global stiffness matrix of topology optimization,Isogeometric topology optimization(ITO)intrinsically suffers from the computationally demanding process.In this work,we address the efficiency problem existing in the assembling stiffness matrix and sensitivity analysis using B˙ezier element stiffness mapping.The Element-wise and Interaction-wise parallel computing frameworks for updating the global stiffness matrix are proposed for ITO with B˙ezier element stiffness mapping,which differs from these ones with the traditional Gaussian integrals utilized.Since the explicit stiffness computation formula derived from B˙ezier element stiffness mapping possesses a typical parallel structure,the presented GPU-enabled ITO method can greatly accelerate the computation speed while maintaining its high memory efficiency unaltered.Numerical examples demonstrate threefold speedup:1)the assembling stiffness matrix is accelerated by 10×maximumly with the proposed GPU strategy;2)the solution efficiency of a sparse linear system is enhanced by up to 30×with Eigen replaced by AMGCL;3)the efficiency of sensitivity analysis is promoted by 100×with GPU applied.Therefore,the proposed method is a promising way to enhance the numerical efficiency of ITO for both single-patch and multiple-patch design problems.
基金funded by the National Natural Science Foundation of China(52008014)the Fundamental Research Funds for the Central Universities(JKF-20240037)supported by the“111 Center”and Beihang World TOP University Cooperation Program.
文摘With the adjustment of the energy structure and the rapid development of commercial complex buildings,building energy systems(BES)are playing an increasingly important role.To fully utilize smart building management techniques for coordinating and optimizing energy systems while limiting carbon emissions,this study proposes a smart building energy scheduling method based on distributionally robust optimization(DRO).First,a framework for day-ahead market interaction between the distribution grid(DG),buildings,and electric vehicles(EVs)is established.Based on the the price elasticity matrix principle,demand side management(DSM)technology is used to model the price-based demand response(PBDR)of building electricity load.Meanwhile,the thermal inertia and thermal load flexibility of the building heating system are utilized to leverage the energy storage capabilities of the heating system.Second,a Wasserstein DRO Stackelberg game model is constructed with the objective of maximizing the benefits for both buildings and EVs.This Wasserstein distributionally robust model is then transformed into a mixed-integer model by combining the Karush–Kuhn–Tucker(KKT)conditions and duality theory.Finally,the optimization effect of temperature load storage characteristics on BES flexible scheduling and the coordination of DRO indicators on the optimization results were verified through simulations.The strategy proposed in this article can reduce the total operating cost of BES by 26.37%,significantly enhancing economic efficiency and achieving electricity and heat substitution,resulting in a smoother load curve.This study provides a theoretical foundation and assurance for optimal daily energy scheduling of BES.
基金National Natural Science Foundation of China,grant number 62205120,funded this research.
文摘In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error.