To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used ...To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.展开更多
Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology an...Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology and engineering condition of Qishan Coal Mine in Xuzhou, the failure characteristics of pump chambers at the –1000 m level show that the main cause can be attributed to the spatial effect induced by intersectional chambers, where one pump is constructed per well. We developed an opti-mized design of the pump room, in which the pump wells in the traditional design are integrated into one compounding well. We suggest that the new design can limit the spatial effect of intersectional chambers during construction given our relevant numerical simulation. The new design is able to simplify the structure of the pump chamber and reduce the amount of excavation required. Based on a bolt-mesh-anchor with a rigid gap coupling supporting technology, the stability of pump chamber can be improved greatly.展开更多
The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the to...The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.展开更多
A mathematical model has been established for the research on scissor elevator for ship passenger stairs.The kinematical and kinetic simulation analyses were carried out with MATLAB/Simulink.The relative kinetic relat...A mathematical model has been established for the research on scissor elevator for ship passenger stairs.The kinematical and kinetic simulation analyses were carried out with MATLAB/Simulink.The relative kinetic relation between hydraulic cylinder and other parts,as well as its rules of change has been found.A 3-D model of ship scissor elevator was established with Pro/E.The design of the mechanism was optimized in Pro/MECHANICA based on the findings from simulation analysis.Practice has proved that the design is scientific and reasonable and could serve as the theoretical guidance and reference for the design of scissor mechanism of other uses.展开更多
Introduction Blood flow provides a mechanical condition for blood cells and vessels,especially for endothelial cells.It is important to understand the mechanical characteristics of
Concepts for a virtual 3D space and a hyper-sphere are proposed and the formulae for determining the computable nodes of the mesh are derived.Then a new optimization design method('Virtual Mesh Method'or V.M.M...Concepts for a virtual 3D space and a hyper-sphere are proposed and the formulae for determining the computable nodes of the mesh are derived.Then a new optimization design method('Virtual Mesh Method'or V.M.M)is developed.Three examples are given,showing that the method proposed is especially suitable for the optimized design of complex structures,and that the global approximate optimal solution can be searched with remarkably reduced computational work.展开更多
In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking s...In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking smart washing machines as an example,to explore new paths for the interface design of smart home products for the elderly.An interdisciplinary approach is adopted to construct a design process centered on elderly users,introduce the Kano model to classify requirements,realize the mapping and sorting of requirements to design parameters,and adopt the PUGH model for comprehensive evaluation.This study provides practical and theoretical support for the interface design of smart home products for the elderly.展开更多
In order to improve the accuracy and stability of transplanting machine seedling picking,a seedling pick-up mechanism was designed,which was controlled by a controller and driven by brushless DC servo motor.At the sam...In order to improve the accuracy and stability of transplanting machine seedling picking,a seedling pick-up mechanism was designed,which was controlled by a controller and driven by brushless DC servo motor.At the same time,the parameters of the seedling manipulator were optimized:the mathematical model for the seedling pick-up mechanism was established.According to the predetermined trajectory requirements,the objective function and constraint conditions were proposed,and then the optimal size was obtained by a multi-objective genetic algorithm.At last,Automatic Dynamic Analysis of Mechanical Systems(ADAMS)software was used to simulate and analyze the kinematics and trajectory of the seedling pick-up mechanism,and the mechanism was tested to verify the effectiveness of the mechanism prototype.The experiments showed that the success rate of seedling picking was 94.32%,the rate of acceptably planted seedlings was 96.67%,and the rate of excellently planted seedlings was 63.48%.展开更多
The forming process of biomass fuel pellets using a ring mold pelletizer was analyzed,optimized,tested and evaluated in this study.The effects of stress amplitude and the stress ratio on the fatigue failure of the rin...The forming process of biomass fuel pellets using a ring mold pelletizer was analyzed,optimized,tested and evaluated in this study.The effects of stress amplitude and the stress ratio on the fatigue failure of the ring mold under 4-,3-,and 2-roller designs were investigated.Depending on the calculation of stress amplitude acting on the ring mold,the 4-roller design was chosen for having the smallest value of stress amplitude in this condition.After determining the main design parameters,a three-dimensional model of the ring mold pelletizer was established based on the Pro/Engineer software,and the model was transferred into ADAMS software through Mechanism/Pro which is a dedicated interface software.The ADAMS software was used to run simulations.In order to obtain the highest efficiency and the lowest power consumption,the optimal result was the 4-roller design.Finally,a prototype of the ring mold pelletizer with four rollers was designed and manufactured for biomass fuel pellet production.Corn stover biomass was used as material for experimental manufacturing of fuel pellets.Test and evaluation showed that the optimized pellet durability was 99.79%with ground corn stover particles passing a screen size of 1.97 mm,moisture content of 21.2%w.b.and a material moisture conditioning time of 3.82 h.Pellets formed in the prototype ring mold pelletizer using corn stover had acceptable durability according to European standards.展开更多
A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and...A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.展开更多
In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(R...In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
The transplanting arm of two-arm transplanting mechanism is easy to cause seedlings injury and missing due to its faster speed relative to the seedlings.In order to solve the existed problems,a three-arm transplanting...The transplanting arm of two-arm transplanting mechanism is easy to cause seedlings injury and missing due to its faster speed relative to the seedlings.In order to solve the existed problems,a three-arm transplanting mechanism for rice potted seedlings was developed in this study.The developed three-arm transplanting mechanism for rice potted seedling can make the transplanting arm realize special trajectory and attitude through the unequal planetary gear transmission.The kinematic model of three-arm transplanting mechanism for rice potted seedling was established,and the optimal design software was developed.Based on the heuristic optimization algorithm named“parameter guide”,a set of satisfied mechanism parameters required by the rice potted seedling transplanting were obtained.The trajectory and attitude of three-arm transplanting mechanism used for the rice potted seedling were analyzed.Besides,the virtual simulation results were basically consistent with the optimization software results,and the correctness of theoretical analysis and virtual simulation were also verified by each other.When the developed transplanting mechanism picked up the seedling,the velocity of transplanting arm relative to the seedling was reduced by about 30%.The results showed that the injury rate of rice potted seedling transplanting mechanism was 0.04%,the missing rate of seedling was 1.4%,the integrity rate of seedling pot matrix was 96%,and the success rate of picking seedling was 99.92%.展开更多
Mechanical weeding not only avoids crop herbicide residue but also protects the ecological environment.Compared with mechanical inter-row weeding,mechanical intra-row weeding needs to avoid crop plants,which is conduc...Mechanical weeding not only avoids crop herbicide residue but also protects the ecological environment.Compared with mechanical inter-row weeding,mechanical intra-row weeding needs to avoid crop plants,which is conducive to causing a higher rate of seedling damage.In order to realize maize(Zea mays L.)intra-row weeding,a maize intra-row weeding mechanism was designed in this study.The mechanism can detect maize seedlings by infrared beam tube,then a sliding-cutting bevel tool moves spirally amid maize seedlings,so as to eradicate intra-row weeds.A field experiment was conducted under the following experimental conditions:the bevel tool rotation speed was 800-1400 r/min,the mechanism forward speed was 4-7 km/h,and the bevel tool depth was 2-14 cm,the experimental results illustrated that the mechanism’s average weeding rate and seedling damage rate were 95.8%and 0.6%,respectively.The variance analysis showed that the primary and secondary factors that affecting the weeding rate and seedling damage rate were the same,which were bevel tool rotation speed,mechanism forward speed,bevel tool depth in soil in a descending order according to the significances.The result of the field experiment may provide a reference for intra-row weeding device design.展开更多
The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross...The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.展开更多
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high...Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.展开更多
It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth ...It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.展开更多
This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet wel...This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet weld,the minimum volume of corner seam was determined in the case of non-linear design constraints.The constraints relate to the maximal stresses and fatigue of welding seam.A numerical solution to this problem is given by genetic optimization algorithm.The optimisation calculation result indicated that the active condition(constraint)was the stress from the static load.Useful and meaningful information is provided for the engineering field.展开更多
Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier r...Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.展开更多
The glass curtain wall is widely favored by the owners for its good appearance modeling efthct. In using process, however, excessive energy consumption, low level indoor eomtort and other problems of glass curtain wal...The glass curtain wall is widely favored by the owners for its good appearance modeling efthct. In using process, however, excessive energy consumption, low level indoor eomtort and other problems of glass curtain wall are often exposed. Aiming at office buildings in hot Summer and cold Winter zone, taking the optimization of thermal comfort of double glass curtain wall in the summer and the reduetion of building energy consumption throughout the year as the breakthrough point, using the method of energy simulation analysis, through changing the size of internal shading component in the simulated room, this paper analyzes and summarizes the variation law of its energy consumption value, to explore the relatively reasonable design plan of shading systems of the building with glass curtain wall.展开更多
基金Beijing Nova Program under Grant No.2022036National Key Research and Development Program under Grant No.2019YFC1521000。
文摘To quantify the seismic effectiveness of the most commonly used fishing line tie up method for securing museum collections and optimize fixed strategies for exhibitions,shaking table tests of the seismic systems used for typical museum collection replicas have been carried out.The influence of body shape and fixed measure parameters on the seismic responses of replicas and the interaction behavior between replicas and fixed measures have been explored.Based on the results,seismic effectiveness evaluation indexes of the tie up method are proposed.Reasonable suggestions for fixed strategies are given,which provide a basis for the exhibition of delicate museum collections considering the principle of minimizing seismic responses and intervention.The analysis results show that a larger ratio of height of mass center to bottom diameter led to more intense rocking responses.Increasing the initial pretension of fishing lines was conducive to reducing the seismic responses and stress variation of the lines.Through comprehensive consideration of the interaction forces and effective securement,it is recommended to apply 20%of breaking stress as the initial pretension.For specific museum collections that cannot be effectively protected by the independent tie up method,an optimized strategy of a combination of fishing lines and fasteners is recommended.
基金supported by the Major Project of the National Basic Research Program of China (No2006CB202200)the Program for New Century Excellent Talents in Uni-versity (NoNCET07-0800)the Special Fund for Basic Research and Operating Expenses of the China University of Mining & Technology, Beijing and the Academician workstation in enterprise of Jiangsu Province (No.BM2009563)
文摘Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology and engineering condition of Qishan Coal Mine in Xuzhou, the failure characteristics of pump chambers at the –1000 m level show that the main cause can be attributed to the spatial effect induced by intersectional chambers, where one pump is constructed per well. We developed an opti-mized design of the pump room, in which the pump wells in the traditional design are integrated into one compounding well. We suggest that the new design can limit the spatial effect of intersectional chambers during construction given our relevant numerical simulation. The new design is able to simplify the structure of the pump chamber and reduce the amount of excavation required. Based on a bolt-mesh-anchor with a rigid gap coupling supporting technology, the stability of pump chamber can be improved greatly.
基金Supported the National Natural Science Foundation of China (No. 51179040) Natural Science Foundation of Heilongjiang Province (No. E200904)
文摘The plow of the submarine plowing trencher is one of the main functional mechanisms, and its optimization is very important. The design parameters play a very significant role in determining the requirements of the towing force of a vessel. A multi-objective genetic algorithm based on analytical models of the plow surface has been examined and applied in efforts to obtain optimal design of the plow. For a specific soil condition, the draft force and moldboard surface area which are the key parameters in the working process of the plow are optimized by finding the corresponding optimal values of the plow blade penetration angle and two surface angles of the main cutting blade of the plow. Parameters such as the moldboard side angle of deviation, moldboard lift angle, angular variation of the tangent line, and the spanning length are also analyzed with respect to the force of the moldboard surface along soil flow direction. Results show that the optimized plow has an improved plow performance. The draft forces of the main cutting blade and the moldboard are 10.6% and 7%, respectively, less than the original design. The standard deviation of Gaussian curvature of moldboard is lowered by 64.5%, which implies that the smoothness of the optimized moldboard surface is much greater than the original.
文摘A mathematical model has been established for the research on scissor elevator for ship passenger stairs.The kinematical and kinetic simulation analyses were carried out with MATLAB/Simulink.The relative kinetic relation between hydraulic cylinder and other parts,as well as its rules of change has been found.A 3-D model of ship scissor elevator was established with Pro/E.The design of the mechanism was optimized in Pro/MECHANICA based on the findings from simulation analysis.Practice has proved that the design is scientific and reasonable and could serve as the theoretical guidance and reference for the design of scissor mechanism of other uses.
基金supported by grant from National Natural Science Foundation of China No10772127,30570450Program for New Century Excellent Talents in University NCET-06-0789Sichaun Youth Science and Technology Foundation 06ZQ026-009
文摘Introduction Blood flow provides a mechanical condition for blood cells and vessels,especially for endothelial cells.It is important to understand the mechanical characteristics of
基金Project supported by the Natural Science Foundation of Henan Province,China(No.0311010400).
文摘Concepts for a virtual 3D space and a hyper-sphere are proposed and the formulae for determining the computable nodes of the mesh are derived.Then a new optimization design method('Virtual Mesh Method'or V.M.M)is developed.Three examples are given,showing that the method proposed is especially suitable for the optimized design of complex structures,and that the global approximate optimal solution can be searched with remarkably reduced computational work.
文摘In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking smart washing machines as an example,to explore new paths for the interface design of smart home products for the elderly.An interdisciplinary approach is adopted to construct a design process centered on elderly users,introduce the Kano model to classify requirements,realize the mapping and sorting of requirements to design parameters,and adopt the PUGH model for comprehensive evaluation.This study provides practical and theoretical support for the interface design of smart home products for the elderly.
基金This research was supported by the National Natural Science Foundation of China(Grant No.51775104).
文摘In order to improve the accuracy and stability of transplanting machine seedling picking,a seedling pick-up mechanism was designed,which was controlled by a controller and driven by brushless DC servo motor.At the same time,the parameters of the seedling manipulator were optimized:the mathematical model for the seedling pick-up mechanism was established.According to the predetermined trajectory requirements,the objective function and constraint conditions were proposed,and then the optimal size was obtained by a multi-objective genetic algorithm.At last,Automatic Dynamic Analysis of Mechanical Systems(ADAMS)software was used to simulate and analyze the kinematics and trajectory of the seedling pick-up mechanism,and the mechanism was tested to verify the effectiveness of the mechanism prototype.The experiments showed that the success rate of seedling picking was 94.32%,the rate of acceptably planted seedlings was 96.67%,and the rate of excellently planted seedlings was 63.48%.
基金the financial support received from the China Scholarship Council(201308210283)the national Spark Program(2015GA650012)+1 种基金the Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province(2014053)the funding provided by Youth Fund of Shenyang Agricultural University(20121002)。
文摘The forming process of biomass fuel pellets using a ring mold pelletizer was analyzed,optimized,tested and evaluated in this study.The effects of stress amplitude and the stress ratio on the fatigue failure of the ring mold under 4-,3-,and 2-roller designs were investigated.Depending on the calculation of stress amplitude acting on the ring mold,the 4-roller design was chosen for having the smallest value of stress amplitude in this condition.After determining the main design parameters,a three-dimensional model of the ring mold pelletizer was established based on the Pro/Engineer software,and the model was transferred into ADAMS software through Mechanism/Pro which is a dedicated interface software.The ADAMS software was used to run simulations.In order to obtain the highest efficiency and the lowest power consumption,the optimal result was the 4-roller design.Finally,a prototype of the ring mold pelletizer with four rollers was designed and manufactured for biomass fuel pellet production.Corn stover biomass was used as material for experimental manufacturing of fuel pellets.Test and evaluation showed that the optimized pellet durability was 99.79%with ground corn stover particles passing a screen size of 1.97 mm,moisture content of 21.2%w.b.and a material moisture conditioning time of 3.82 h.Pellets formed in the prototype ring mold pelletizer using corn stover had acceptable durability according to European standards.
文摘A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.
基金supported by the Industrial Strategic Technology Development Program(10070171,Development of core technology for advanced locomotion/manipulation based on high-speed/power robot platform and robot intelligence)funded By the Ministry of Trade,Industry&Energy(MI,Korea).
文摘In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金supported by the National Natural Science Foundation of China(Grant No.52005221)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200897)the China Postdoctoral Science Foundation(Grant No.2021M691315).
文摘The transplanting arm of two-arm transplanting mechanism is easy to cause seedlings injury and missing due to its faster speed relative to the seedlings.In order to solve the existed problems,a three-arm transplanting mechanism for rice potted seedlings was developed in this study.The developed three-arm transplanting mechanism for rice potted seedling can make the transplanting arm realize special trajectory and attitude through the unequal planetary gear transmission.The kinematic model of three-arm transplanting mechanism for rice potted seedling was established,and the optimal design software was developed.Based on the heuristic optimization algorithm named“parameter guide”,a set of satisfied mechanism parameters required by the rice potted seedling transplanting were obtained.The trajectory and attitude of three-arm transplanting mechanism used for the rice potted seedling were analyzed.Besides,the virtual simulation results were basically consistent with the optimization software results,and the correctness of theoretical analysis and virtual simulation were also verified by each other.When the developed transplanting mechanism picked up the seedling,the velocity of transplanting arm relative to the seedling was reduced by about 30%.The results showed that the injury rate of rice potted seedling transplanting mechanism was 0.04%,the missing rate of seedling was 1.4%,the integrity rate of seedling pot matrix was 96%,and the success rate of picking seedling was 99.92%.
基金supported by the National Natural Science Foundation of China(Grant No.31901408).
文摘Mechanical weeding not only avoids crop herbicide residue but also protects the ecological environment.Compared with mechanical inter-row weeding,mechanical intra-row weeding needs to avoid crop plants,which is conducive to causing a higher rate of seedling damage.In order to realize maize(Zea mays L.)intra-row weeding,a maize intra-row weeding mechanism was designed in this study.The mechanism can detect maize seedlings by infrared beam tube,then a sliding-cutting bevel tool moves spirally amid maize seedlings,so as to eradicate intra-row weeds.A field experiment was conducted under the following experimental conditions:the bevel tool rotation speed was 800-1400 r/min,the mechanism forward speed was 4-7 km/h,and the bevel tool depth was 2-14 cm,the experimental results illustrated that the mechanism’s average weeding rate and seedling damage rate were 95.8%and 0.6%,respectively.The variance analysis showed that the primary and secondary factors that affecting the weeding rate and seedling damage rate were the same,which were bevel tool rotation speed,mechanism forward speed,bevel tool depth in soil in a descending order according to the significances.The result of the field experiment may provide a reference for intra-row weeding device design.
文摘The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.
基金the National Natural Science Foundation of China(21962008)Yunnan Province Excellent Youth Fund Project(202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province(2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-346).
文摘Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.
文摘It is a major challenge for the airframe-inlet design of modern combat aircrafts,as the flow and electromagnetic wave propagation in the inlet of stealth aircraft are very complex.In this study,an aerodynamic/stealth optimization design method for an S-duct inlet is proposed.The upwind scheme is introduced to the aerodynamic adjoint equation to resolve the shock wave and flow separation.The multilevel fast multipole algorithm(MLFMA)is utilized for the stealth adjoint equation.A dorsal S-duct inlet of flying wing layout is optimized to improve the aerodynamic and stealth characteristics.Both the aerodynamic and stealth characteristics of the inlet are effectively improved.Finally,the optimization results are analyzed,and it shows that the main contradiction between aerodynamic characteristics and stealth characteristics is the centerline and crosssectional area.The S-duct is smoothed,and the cross-sectional area is increased to improve the aerodynamic characteristics,while it is completely opposite for the stealth design.The radar cross section(RCS)is reduced by phase cancelation for low frequency conditions.The method is suitable for the aerodynamic/stealth design of the aircraft airframe-inlet system.
文摘This paper deals with the optimal design of the fillet weld of wind turbine column subjected to bending moment.Under the premise of determined the force acting on the column,in order to further optimize the fillet weld,the minimum volume of corner seam was determined in the case of non-linear design constraints.The constraints relate to the maximal stresses and fatigue of welding seam.A numerical solution to this problem is given by genetic optimization algorithm.The optimisation calculation result indicated that the active condition(constraint)was the stress from the static load.Useful and meaningful information is provided for the engineering field.
文摘Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.
文摘The glass curtain wall is widely favored by the owners for its good appearance modeling efthct. In using process, however, excessive energy consumption, low level indoor eomtort and other problems of glass curtain wall are often exposed. Aiming at office buildings in hot Summer and cold Winter zone, taking the optimization of thermal comfort of double glass curtain wall in the summer and the reduetion of building energy consumption throughout the year as the breakthrough point, using the method of energy simulation analysis, through changing the size of internal shading component in the simulated room, this paper analyzes and summarizes the variation law of its energy consumption value, to explore the relatively reasonable design plan of shading systems of the building with glass curtain wall.