期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Optimizing Fine-Tuning in Quantized Language Models:An In-Depth Analysis of Key Variables
1
作者 Ao Shen Zhiquan Lai +1 位作者 Dongsheng Li Xiaoyu Hu 《Computers, Materials & Continua》 SCIE EI 2025年第1期307-325,共19页
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci... Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments. 展开更多
关键词 Large-scale Language Model Parameter-Efficient fine-tuning parameter quantization key variable trainable parameters experimental analysis
在线阅读 下载PDF
Fine-tuning electronic structure of N-doped graphitic carbon-supported Co-and Fe-incorporated Mo_(2)C to achieve ultrahigh electrochemical water oxidation activity 被引量:2
2
作者 Md.Selim Arif Sher Shah Hyeonjung Jung +3 位作者 Vinod K.Paidi Kug-Seung Lee Jeong Woo Han Jong Hyeok Park 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期134-149,共16页
Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated... Mo_(2)C is an excellent electrocatalyst for hydrogen evolution reaction(HER).However,Mo_(2)C is a poor electrocatalyst for oxygen evolution reaction(OER).Herein,two different elements,namely Co and Fe,are incorporated in Mo_(2)C that,therefore,has a finely tuned electronic structure,which is not achievable by incorporation of any one of the metals.Consequently,the resulting electrocatalyst Co_(0.8)Fe_(0.2)-Mo_(2)C-80 displayed excellent OER catalytic performance,which is evidenced by a low overpotential of 214.0(and 246.5)mV to attain a current density of 10(and 50)mA cm^(-2),an ultralow Tafel slope of 38.4 mV dec^(-1),and longterm stability in alkaline medium.Theoretical data demonstrates that Co_(0.8)Fe_(0.2)-Mo_(2)C-80 requires the lowest overpotential(1.00 V)for OER and Co centers to be the active sites.The ultrahigh catalytic performance of the electrocatalyst is attributed to the excellent intrinsic catalytic activity due to high Brunauer-Emmett-Teller specific surface area,large electrochemically active surface area,small Tafel slope,and low chargetransfer resistance. 展开更多
关键词 fine-tuning electronic structures heteronanostructures Mo_(2)C multimetal(Co/Fe) oxygen evolution reaction
在线阅读 下载PDF
Comparing Fine-Tuning, Zero and Few-Shot Strategies with Large Language Models in Hate Speech Detection in English
3
作者 Ronghao Pan JoséAntonio García-Díaz Rafael Valencia-García 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2849-2868,共20页
Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning... Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning,which involves the ability to receive instructions in natural language or task demonstrations to generate expected outputs for test instances without the need for additional training or gradient updates.In recent years,the popularity of social networking has provided a medium through which some users can engage in offensive and harmful online behavior.In this study,we investigate the ability of different LLMs,ranging from zero-shot and few-shot learning to fine-tuning.Our experiments show that LLMs can identify sexist and hateful online texts using zero-shot and few-shot approaches through information retrieval.Furthermore,it is found that the encoder-decoder model called Zephyr achieves the best results with the fine-tuning approach,scoring 86.811%on the Explainable Detection of Online Sexism(EDOS)test-set and 57.453%on the Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter(HatEval)test-set.Finally,it is confirmed that the evaluated models perform well in hate text detection,as they beat the best result in the HatEval task leaderboard.The error analysis shows that contextual learning had difficulty distinguishing between types of hate speech and figurative language.However,the fine-tuned approach tends to produce many false positives. 展开更多
关键词 Hate speech detection zero-shot few-shot fine-tuning natural language processing
在线阅读 下载PDF
Optimizing Enterprise Conversational AI: Accelerating Response Accuracy with Custom Dataset Fine-Tuning
4
作者 Yash Kishore 《Intelligent Information Management》 2024年第2期65-76,共12页
As the realm of enterprise-level conversational AI continues to evolve, it becomes evident that while generalized Large Language Models (LLMs) like GPT-3.5 bring remarkable capabilities, they also bring forth formidab... As the realm of enterprise-level conversational AI continues to evolve, it becomes evident that while generalized Large Language Models (LLMs) like GPT-3.5 bring remarkable capabilities, they also bring forth formidable challenges. These models, honed on vast and diverse datasets, have undoubtedly pushed the boundaries of natural language understanding and generation. However, they often stumble when faced with the intricate demands of nuanced enterprise applications. This research advocates for a strategic paradigm shift, urging enterprises to embrace a fine-tuning approach as a means to optimize conversational AI. While generalized LLMs are linguistic marvels, their inability to cater to the specific needs of businesses across various industries poses a critical challenge. This strategic shift involves empowering enterprises to seamlessly integrate their own datasets into LLMs, a process that extends beyond linguistic enhancement. The core concept of this approach centers on customization, enabling businesses to fine-tune the AI’s functionality to fit precisely within their unique business landscapes. By immersing the LLM in industry-specific documents, customer interaction records, internal reports, and regulatory guidelines, the AI transcends its generic capabilities to become a sophisticated conversational partner aligned with the intricacies of the enterprise’s domain. The transformative potential of this fine-tuning approach cannot be overstated. It enables a transition from a universal AI solution to a highly customizable tool. The AI evolves from being a linguistic powerhouse to a contextually aware, industry-savvy assistant. As a result, it not only responds with linguistic accuracy but also with depth, relevance, and resonance, significantly elevating user experiences and operational efficiency. In the subsequent sections, this paper delves into the intricacies of fine-tuning, exploring the multifaceted challenges and abundant opportunities it presents. It addresses the technical intricacies of data integration, ethical considerations surrounding data usage, and the broader implications for the future of enterprise AI. The journey embarked upon in this research holds the potential to redefine the role of conversational AI in enterprises, ushering in an era where AI becomes a dynamic, deeply relevant, and highly effective tool, empowering businesses to excel in an ever-evolving digital landscape. 展开更多
关键词 fine-tuning DATASET AI CONVERSATIONAL ENTERPRISE LLM
在线阅读 下载PDF
Rotary-scaling fine-tuning (RSFT) method for optimizing railway wheel profiles and its application to a locomotive 被引量:11
5
作者 Yunguang Ye Yayun Qi +3 位作者 Dachuan Shi Yu Sun Yichang Zhou Markus Hecht 《Railway Engineering Science》 2020年第2期160-183,共24页
The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ... The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications. 展开更多
关键词 Wheel profile optimization Wear reduction Rotary-scaling fine-tuning Particle swarm optimization Kriging surrogate model
在线阅读 下载PDF
Railway wheel profile fine-tuning system for profile recommendation 被引量:3
6
作者 Yunguang Ye Jonas Vuitton +1 位作者 Yu Sun Markus Hecht 《Railway Engineering Science》 2021年第1期74-93,共20页
This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one... This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively. 展开更多
关键词 Wheel profile fine-tuning system Optimization RECOMMENDATION WEAR Contact concentration index Multi-body dynamics simulation(MBS) Railway wheel
在线阅读 下载PDF
Fine-tuning of cortical progenitor proliferation by thalamic afferents
7
作者 Katrin Gerstmann Geraldine Zimmer 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期887-888,共2页
During cerebral cortical cortex neurogenesis two major types of progenitors generate a variety of morphologically and functionally diverse projection neurons destined for the different cortical layers in non-gyrified ... During cerebral cortical cortex neurogenesis two major types of progenitors generate a variety of morphologically and functionally diverse projection neurons destined for the different cortical layers in non-gyrified mice. Radial glia cells (RGCs) undergo mitosis in the cortical ventricular zone and exhibit an apical-basal cell polarity, whereas non-polar intermediate progenitor cells (IPCs) divide basally in the subventricular zone (Franco and Muller, 2013; Taverna et al., 2014). 展开更多
关键词 Eph fine-tuning of cortical progenitor proliferation by thalamic afferents
在线阅读 下载PDF
基于Fine-tune与DDC的变工况数控设备部件故障诊断
8
作者 王渤 杨越 +3 位作者 陆剑峰 余涛 颜鼎峰 徐煜昊 《机床与液压》 北大核心 2024年第22期22-29,共8页
针对复杂工业环境下的数控设备部件故障诊断数据样本少、变工况诊断困难和准确率不高等问题,提出一种基于模型迁移的故障诊断方法。利用连续小波变换对不同工况下的原始振动数据进行预处理,建立二维时频数据集,并分为源域与目标域;利用... 针对复杂工业环境下的数控设备部件故障诊断数据样本少、变工况诊断困难和准确率不高等问题,提出一种基于模型迁移的故障诊断方法。利用连续小波变换对不同工况下的原始振动数据进行预处理,建立二维时频数据集,并分为源域与目标域;利用源域数据集与CNN进行模型预训练;分别引入微调(Fine-tune)与深度域混淆(DDC)2种迁移学习方式改进模型;最终实现了基于Fine-tune与基于DDC的故障诊断模型的构建。以轴承与数控铣刀2种部件为例进行实验验证,结果证明:Fine-tune与DDC均可以有效提高数控设备部件的故障诊断准确率,其中Fine-tune的泛化能力强,而DDC训练耗时更短且在复杂环境下的性能更优。 展开更多
关键词 故障诊断 变工况 卷积神经网络 fine-tune 深度域混淆(DDC)
在线阅读 下载PDF
New approach to assess sperm DNA fragmentation dynamics: Fine-tuning mathematical models
9
作者 Isabel Ortiz Jesus Dorado +4 位作者 Jane Morrell Jaime Gosalvez Francisco Crespo Juan M.Jimenez Manuel Hidalgo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第3期592-600,共9页
Background: Sperm DNA fragmentation(sDF) has been proved to be an important parameter in order to predict in vitro the potential fertility of a semen sample. Colloid centrifugation could be a suitable technique to ... Background: Sperm DNA fragmentation(sDF) has been proved to be an important parameter in order to predict in vitro the potential fertility of a semen sample. Colloid centrifugation could be a suitable technique to select those donkey sperm more resistant to DNA fragmentation after thawing. Previous studies have shown that to elucidate the latent damage of the DNA molecule, sDF should be assessed dynamically, where the rate of fragmentation between treatments indicates how resistant the DNA is to iatrogenic damage. The rate of fragmentation is calculated using the slope of a linear regression equation. However, it has not been studied if s DF dynamics fit this model. The objectives of this study were to evaluate the effect of different after-thawing centrifugation protocols on sperm DNA fragmentation and elucidate the most accurate mathematical model(linear regression, exponential or polynomial) for DNA fragmentation over time in frozen-thawed donkey semen.Results: After submitting post-thaw semen samples to no centrifugation(UDC), sperm washing(SW) or single layer centrifugation(SLC) protocols, sD F values after 6 h of incubation were significantly lower in SLC samples than in SW or UDC.Coefficient of determination(R-2) values were significantly higher for a second order polynomial model than for linear or exponential. The highest values for acceleration of fragmentation(aSDF) were obtained for SW, fol owed by SLC and UDC.Conclusion: SLC after thawing seems to preserve longer DNA longevity in comparison to UDC and SW. Moreover,the fine-tuning of models has shown that sDF dynamics in frozen-thawed donkey semen fit a second order polynomial model, which implies that fragmentation rate is not constant and fragmentation acceleration must be taken into account to elucidate hidden damage in the DNA molecule. 展开更多
关键词 Colloid centrifugation Dynamics fine-tuning Mathematical models Sperm DNA fragmentation
在线阅读 下载PDF
Enhancing Fire Detection Performance Based on Fine-Tuned YOLOv10
10
作者 Trong Thua Huynh Hoang Thanh Nguyen Du Thang Phu 《Computers, Materials & Continua》 SCIE EI 2024年第11期2281-2298,共18页
In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural N... In recent years,early detection and warning of fires have posed a significant challenge to environmental protection and human safety.Deep learning models such as Faster R-CNN(Faster Region based Convolutional Neural Network),YOLO(You Only Look Once),and their variants have demonstrated superiority in quickly detecting objects from images and videos,creating new opportunities to enhance automatic and efficient fire detection.The YOLO model,especially newer versions like YOLOv10,stands out for its fast processing capability,making it suitable for low-latency applications.However,when applied to real-world datasets,the accuracy of fire prediction is still not high.This study improves the accuracy of YOLOv10 for real-time applications through model fine-tuning techniques and data augmentation.The core work of the research involves creating a diverse fire image dataset specifically suited for fire detection applications in buildings and factories,freezing the initial layers of the model to retain general features learned from the dataset by applying the Squeeze and Excitation attention mechanism and employing the Stochastic Gradient Descent(SGD)with a momentum optimization algorithm to enhance accuracy while ensuring real-time fire detection.Experimental results demonstrate the effectiveness of the proposed fire prediction approach,where the YOLOv10 small model exhibits the best balance compared to other YOLO family models such as nano,medium,and balanced.Additionally,the study provides an experimental evaluation to highlight the effectiveness of model fine-tuning compared to the YOLOv10 baseline,YOLOv8 and Faster R-CNN based on two criteria:accuracy and prediction time. 展开更多
关键词 Fire detection ACCURACY prediction time fine-tuning real-time YOLOv10 Faster R-CNN
在线阅读 下载PDF
Fine-Tuning Bilateral Ties
11
作者 Ni Yanshuo 《ChinAfrica》 2011年第2期14-17,共4页
Chinese Vice Premier’s visit to Africa continues to emphasize the mutual cooperation,with a focus on agriculture FOR many years,the Chinese Government has dispatched the minister of foreign affairs to Africa for the ... Chinese Vice Premier’s visit to Africa continues to emphasize the mutual cooperation,with a focus on agriculture FOR many years,the Chinese Government has dispatched the minister of foreign affairs to Africa for the first official visit of a year.This year,however,that rule was broken when Hui Liangyu,Chinese Vice Premier,made the 14-day trip. On January 6-19,Hui paid official visits to Mauritius,Zambia,the Democratic Republic of Congo(DRC),Cameroon and Senegal,focusing on economic and agri- 展开更多
关键词 fine-tuning Bilateral Ties DRC
在线阅读 下载PDF
Classification of Conversational Sentences Using an Ensemble Pre-Trained Language Model with the Fine-Tuned Parameter
12
作者 R.Sujatha K.Nimala 《Computers, Materials & Continua》 SCIE EI 2024年第2期1669-1686,共18页
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir... Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88. 展开更多
关键词 Bidirectional encoder for representation of transformer conversation ensemble model fine-tuning generalized autoregressive pretraining for language understanding generative pre-trained transformer hyperparameter tuning natural language processing robustly optimized BERT pretraining approach sentence classification transformer models
在线阅读 下载PDF
Optimizing Airline Review Sentiment Analysis:A Comparative Analysis of LLaMA and BERT Models through Fine-Tuning and Few-Shot Learning
13
作者 Konstantinos I.Roumeliotis Nikolaos D.Tselikas Dimitrios K.Nasiopoulos 《Computers, Materials & Continua》 2025年第2期2769-2792,共24页
In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance o... In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance of two advanced models,the Large Language Model(LLM)LLaMA model and NLP BERT model,in the context of airline review sentiment analysis.Through fine-tuning,domain adaptation,and the application of few-shot learning,the study addresses the subtleties of sentiment expressions in airline-related text data.Employing predictive modeling and comparative analysis,the research evaluates the effectiveness of Large Language Model Meta AI(LLaMA)and Bidirectional Encoder Representations from Transformers(BERT)in capturing sentiment intricacies.Fine-tuning,including domain adaptation,enhances the models'performance in sentiment classification tasks.Additionally,the study explores the potential of few-shot learning to improve model generalization using minimal annotated data for targeted sentiment analysis.By conducting experiments on a diverse airline review dataset,the research quantifies the impact of fine-tuning,domain adaptation,and few-shot learning on model performance,providing valuable insights for industries aiming to predict recommendations and enhance customer satisfaction through a deeper understanding of sentiment in user-generated content(UGC).This research contributes to refining sentiment analysis models,ultimately fostering improved customer satisfaction in the airline industry. 展开更多
关键词 Sentiment classification review sentiment analysis user-generated content domain adaptation customer satisfaction LLaMA model BERT model airline reviews LLM classification fine-tuning
在线阅读 下载PDF
基于差分隐私的联邦大模型微调技术 被引量:1
14
作者 曾辉 熊诗雨 +1 位作者 狄永正 史红周 《信息安全研究》 CSCD 北大核心 2024年第7期616-623,共8页
随着私有数据可用性的降低,基于联邦学习的大模型参数微调成为备受关注的研究领域.尽管联邦学习本身具有一定程度的隐私保护能力,但其中的梯度泄露攻击和针对大模型的嵌入反转攻击等隐私安全问题仍然威胁着参与者的敏感信息.在当前对隐... 随着私有数据可用性的降低,基于联邦学习的大模型参数微调成为备受关注的研究领域.尽管联邦学习本身具有一定程度的隐私保护能力,但其中的梯度泄露攻击和针对大模型的嵌入反转攻击等隐私安全问题仍然威胁着参与者的敏感信息.在当前对隐私保护意识不断增强的背景下,这些潜在的隐私风险显著阻碍了基于联邦学习的大模型参数微调在实际应用中的推广.因此,提出一种联邦大模型嵌入差分隐私控制算法,通过全局和本地双重隐私控制机制,在高效参数微调过程中为大模型的嵌入模型添加可控的随机噪声,以增强基于联邦学习的大模型参数微调的隐私保护能力.此外,通过对不同联邦设置的实验比较,展示了该算法在大模型参数微调中的隐私保护效果,并通过中心化和联邦化的性能比较实验验证了该算法的可行性. 展开更多
关键词 联邦学习 大模型 高效参数微调 差分隐私 数据隐私泄露
在线阅读 下载PDF
融合多种参数高效微调技术的深度伪造检测方法
15
作者 张溢文 蔡满春 +2 位作者 陈咏豪 朱懿 姚利峰 《计算机科学与探索》 CSCD 北大核心 2024年第12期3335-3347,共13页
近年来,随着深度伪造技术趋于成熟,换脸软件、合成视频已经随处可见。尽管深度伪造技术为人们带来了娱乐,但同时也为不法分子提供了滥用的机会。因此,深度伪造检测技术的重要性也日益凸显。现有的深度伪造检测方法普遍存在跨压缩率鲁棒... 近年来,随着深度伪造技术趋于成熟,换脸软件、合成视频已经随处可见。尽管深度伪造技术为人们带来了娱乐,但同时也为不法分子提供了滥用的机会。因此,深度伪造检测技术的重要性也日益凸显。现有的深度伪造检测方法普遍存在跨压缩率鲁棒性差、跨数据集泛化性差以及模型训练开销大等问题。为解决上述问题,提出一种融合多种参数高效微调技术的深度伪造检测方法,使用以掩码图像建模(MIM)自监督方法预训练的视觉自注意力模型作为主干,使用克罗内克积改进的低秩自适应方法对预训练模型的自注意力模块参数进行微调,同时采用并行结构加入卷积适配器对图像局部纹理信息进行学习,以增强预训练模型在深度伪造检测任务中的适应能力,采用并行结构引入经典适配器对预训练模型的前馈网络微调以充分利用预训练阶段学习到的知识,使用多层感知机代替原预训练模型分类头实现深度伪造检测。在六个数据集上的实验结果表明,该模型在可训练参数仅有2×10^(7)的情况下,在六个主流数据集上实现了平均约0.996的帧水平AUC。在跨压缩率实验中,帧水平AUC的平均下降为0.135。在跨数据集泛化性实验中,帧水平AUC达到了平均0.765。 展开更多
关键词 深度伪造 视觉自注意力模型 自监督预训练模型 低秩自适应 参数高效微调
在线阅读 下载PDF
Fine-tuning growth in gold nanostructures from achiral 2D to chiral 3D geometries
16
作者 Lili Tan Zhi Chen +6 位作者 Chengyu Xiao Zhiyong Geng Yinran Jin Chaoyang Wei Fei Teng Wenlong Fu Peng-peng Wang 《Nano Research》 SCIE EI CSCD 2024年第7期6654-6660,共7页
Enriching the library of chiral plasmonic structures is of significant importance in advancing their applicability across diverse domains such as biosensing,nanophotonics,and catalysis.Here,employing triangle nanoplat... Enriching the library of chiral plasmonic structures is of significant importance in advancing their applicability across diverse domains such as biosensing,nanophotonics,and catalysis.Here,employing triangle nanoplates as growth seeds,we synthesized a novel class of chiral-shaped plasmonic nanostructures through a wet chemical strategy with dipeptide as chiral inducers,including chiral tri-blade boomerangs,concave rhombic dodecahedrons,and nanoflowers.The structural diversity in chiral plasmonic nanostructures was elucidated through their continuous morphological evolution from two-dimensional to threedimensional architectures.The fine-tuning of chiroptical properties was achieved by precisely manipulating crucial synthetic parameters such as the amount of chiral molecules,seeds,and gold precursor that significantly influenced chiral structure formation.The findings provide a promising avenue for enriching chiral materials with highly sophisticated structures,facilitating a fundamental understanding of the relationship between structural nuances and chiroptical properties. 展开更多
关键词 plasmonic nanostructures geometric chirality circular dichroism fine-tuning
原文传递
Fine-Tuning Channel-Pruned Deep Model via Knowledge Distillation
17
作者 Chong Zhang Hong-Zhi Wang +1 位作者 Hong-Wei Liu Yi-Lin Chen 《Journal of Computer Science & Technology》 CSCD 2024年第6期1238-1247,共10页
Deep convolutional neural networks with high performance are hard to be deployed in many real world applications, since the computing resources of edge devices such as smart phones or embedded GPU are limited. To alle... Deep convolutional neural networks with high performance are hard to be deployed in many real world applications, since the computing resources of edge devices such as smart phones or embedded GPU are limited. To alleviate this hardware limitation, the compression of deep neural networks from the model side becomes important. As one of the most popular methods in the spotlight, channel pruning of the deep convolutional model can effectively remove redundant convolutional channels from the CNN (convolutional neural network) without affecting the network’s performance remarkably. Existing methods focus on pruning design, evaluating the importance of different convolutional filters in the CNN model. A fast and effective fine-tuning method to restore accuracy is urgently needed. In this paper, we propose a fine-tuning method KDFT (Knowledge Distillation Based Fine-Tuning), which improves the accuracy of fine-tuned models with almost negligible training overhead by introducing knowledge distillation. Extensive experimental results on benchmark datasets with representative CNN models show that up to 4.86% accuracy improvement and 79% time saving can be obtained. 展开更多
关键词 model compression deep learning knowledge distillation fine-tuning
原文传递
Helium enrichment theory and exploration ideas for helium-rich gas reservoirs
18
作者 QIN Shengfei Dou Lirong +6 位作者 TAO Gang LI Jiyuan QI Wen LI Xiaobin GUO Bincheng ZHAO Zizhuo WANG Jiamei 《Petroleum Exploration and Development》 SCIE 2024年第5期1340-1356,共17页
Using gas and rock samples from major petroliferous basins in the world,the helium content,composition,isotopic compositions and the U and Th contents in rocks are analyzed to clarify the helium enrichment mechanism a... Using gas and rock samples from major petroliferous basins in the world,the helium content,composition,isotopic compositions and the U and Th contents in rocks are analyzed to clarify the helium enrichment mechanism and distribution pattern and the exploration ideas for helium-rich gas reservoirs.It is believed that the formation of helium-rich gas reservoirs depends on the amount of helium supplied to the reservoir and the degree of helium dilution by natural gas,and that the reservoir-forming process can be summarized as"multi-source helium supply,main-source helium enrichment,helium-nitrogen coupling,and homogeneous symbiosis".Helium mainly comes from the radioactive decay of U and Th in rocks.All rocks contain trace amounts of U and Th,so they are effective helium sources.Especially,large-scale ancient basement dominated by granite or metamorphic rocks is the main helium source.The helium generated by the decay of U and Th in the ancient basement in a long geologic history,together with the nitrogen generated by the cracking of the inorganic nitrogenous compounds in the basement rocks,is dissolved in the water and preserved.With the tectonic uplift,the ground water is transported upward along the fracture to the gas reservoirs,with helium and nitrogen released.Thus,the reservoirs are enriched with both helium and nitrogen,which present a clear concomitant and coupling relationship.In tensional basins in eastern China,where tectonic activities are strong,a certain proportion of mantle-derived helium is mixed in the natural gas.The helium-rich gas reservoirs are mostly located in normal or low-pressure zones above ancient basement with fracture communication,which later experience substantial tectonic uplift and present relatively weak seal,low intensity of natural gas charging,and active groundwater.Helium exploration should focus on gas reservoirs with fractures connecting ancient basement,large tectonic uplift,relatively weak sealing capacity,insufficient natural gas charging intensity,and rich ancient formation water,depending on the characteristics of helium enrichment,beyond the traditional idea of searching for natural gas sweetspots and high-yield giant gas fields simultaneously. 展开更多
关键词 reservoir performance analysis artificial intelligence large model application-specific large language model incremental pre-training fine-tuning subsystems coupling entity recognition tool invocation
在线阅读 下载PDF
Construction and preliminary application of large language model for reservoir performance analysis
19
作者 PAN Huanquan LIU Jianqiao +13 位作者 GONG Bin ZHU Yiheng BAI Junhui HUANG Hu FANG Zhengbao JING Hongbin LIU Chen KUANG Tie LAN Yubo WANG Tianzhi XIE Tian CHENG Mingzhe QIN Bin SHEN Yujiang 《Petroleum Exploration and Development》 SCIE 2024年第5期1357-1366,共10页
A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in re... A large language model(LLM)is constructed to address the sophisticated demands of data retrieval and analysis,detailed well profiling,computation of key technical indicators,and the solutions to complex problems in reservoir performance analysis(RPA).The LLM is constructed for RPA scenarios with incremental pre-training,fine-tuning,and functional subsystems coupling.Functional subsystem and efficient coupling methods are proposed based on named entity recognition(NER),tool invocation,and Text-to-SQL construction,all aimed at resolving pivotal challenges in developing the specific application of LLMs for RDA.This study conducted a detailed accuracy test on feature extraction models,tool classification models,data retrieval models and analysis recommendation models.The results indicate that these models have demonstrated good performance in various key aspects of reservoir dynamic analysis.The research takes some injection and production well groups in the PK3 Block of the Daqing Oilfield as an example for testing.Testing results show that our model has significant potential and practical value in assisting reservoir engineers with RDA.The research results provide a powerful support to the application of LLM in reservoir performance analysis. 展开更多
关键词 reservoir performance analysis artificial intelligence large model application-specific large language model in-cremental pre-training fine-tuning subsystems coupling entity recognition tool invocation
在线阅读 下载PDF
Research status and application of artificial intelligence large models in the oil and gas industry
20
作者 LIU He REN Yili +6 位作者 LI Xin DENG Yue WANG Yongtao CAO Qianwen DU Jinyang LIN Zhiwei WANG Wenjie 《Petroleum Exploration and Development》 SCIE 2024年第4期1049-1065,共17页
This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large mode... This article elucidates the concept of large model technology,summarizes the research status of large model technology both domestically and internationally,provides an overview of the application status of large models in vertical industries,outlines the challenges and issues confronted in applying large models in the oil and gas sector,and offers prospects for the application of large models in the oil and gas industry.The existing large models can be briefly divided into three categories:large language models,visual large models,and multimodal large models.The application of large models in the oil and gas industry is still in its infancy.Based on open-source large language models,some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation.Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models.A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation,as well as core analysis.The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models,high research and development costs,and poor algorithm autonomy and control.The application of large models should be guided by the needs of oil and gas business,taking the application of large models as an opportunity to improve data lifecycle management,enhance data governance capabilities,promote the construction of computing power,strengthen the construction of“artificial intelligence+energy”composite teams,and boost the autonomy and control of large model technology. 展开更多
关键词 foundation model large language mode visual large model multimodal large model large model of oil and gas industry pre-training fine-tuning
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部