期刊文献+
共找到154篇文章
< 1 2 8 >
每页显示 20 50 100
Multi-objective optimization of membrane structures based on Pareto Genetic Algorithm 被引量:7
1
作者 伞冰冰 孙晓颖 武岳 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期622-630,共9页
A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization v... A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures. 展开更多
关键词 membrane structures multi-objective optimization pareto solutions multi-objective genetic algorithm
在线阅读 下载PDF
Bi-Objective Optimization: A Pareto Method with Analytical Solutions
2
作者 David W. K. Yeung Yingxuan Zhang 《Applied Mathematics》 2023年第1期57-81,共25页
Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front... Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front is obtained in closed-form, enabling the derivation of various solutions in a convenient and efficient way. The advantage of analytical solution is the possibility of deriving accurate, exact and well-understood solutions, which is especially useful for policy analysis. An extension of the method to include multiple objectives is provided with the objectives being classified into two types. Such an extension expands the applicability of the developed techniques. 展开更多
关键词 multi-objective Optimization pareto Optimal Front Analytical solution Lagrange Method Karush-Kuhn-Tucker Conditions
在线阅读 下载PDF
Improved Multi-objective Ant Colony Optimization Algorithm and Its Application in Complex Reasoning 被引量:3
3
作者 WANG Xinqing ZHAO Yang +2 位作者 WANG Dong ZHU Huijie ZHANG Qing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期1031-1040,共10页
The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become... The problem of fault reasoning has aroused great concern in scientific and engineering fields.However,fault investigation and reasoning of complex system is not a simple reasoning decision-making problem.It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints.So far,little research has been carried out in this field.This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes.Three optimization objectives are considered simultaneously: maximum probability of average fault,maximum average importance,and minimum average complexity of test.Under the constraints of both known symptoms and the causal relationship among different components,a multi-objective optimization mathematical model is set up,taking minimizing cost of fault reasoning as the target function.Since the problem is non-deterministic polynomial-hard(NP-hard),a modified multi-objective ant colony algorithm is proposed,in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives.At last,a Pareto optimal set is acquired.Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set,through which the final fault causes can be identified according to decision-making demands,thus realize fault reasoning of the multi-constraint and multi-objective complex system.Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model,which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system. 展开更多
关键词 fault reasoning ant colony algorithm pareto set multi-objective optimization complex system
在线阅读 下载PDF
Multi-Objective Task Assignment for Maximizing Social Welfare in Spatio-Temporal Crowdsourcing 被引量:3
4
作者 Shengnan Wu Yingjie Wang Xiangrong Tong 《China Communications》 SCIE CSCD 2021年第11期11-25,共15页
With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network tr... With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network transmission has led to low data processing efficiency.Fortunately,edge computing can solve this problem,effectively reduce the delay of data transmission,and improve data processing capacity,so that the crowdsourcing platform can make better decisions faster.Therefore,this paper combines spatio-temporal crowdsourcing and edge computing to study the Multi-Objective Optimization Task Assignment(MOO-TA)problem in the edge computing environment.The proposed online incentive mechanism considers the task difficulty attribute to motivate crowd workers to perform sensing tasks in the unpopular area.In this paper,the Weighted and Multi-Objective Particle Swarm Combination(WAMOPSC)algorithm is proposed to maximize both platform’s and crowd workers’utility,so as to maximize social welfare.The algorithm combines the traditional Linear Weighted Summation(LWS)algorithm and Multi-Objective Particle Swarm Optimization(MOPSO)algorithm to find pareto optimal solutions of multi-objective optimization task assignment problem as much as possible for crowdsourcing platform to choose.Through comparison experiments on real data sets,the effectiveness and feasibility of the proposed method are evaluated. 展开更多
关键词 spatio-temporal crowdsourcing edge computing task assignment multi-objective optimization particle swarm optimization pareto optimal solution
在线阅读 下载PDF
A Novel Collaborative Evolutionary Algorithm with Two-Population for Multi-Objective Flexible Job Shop Scheduling 被引量:2
5
作者 CuiyuWang Xinyu Li Yiping Gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1849-1870,共22页
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl... Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods. 展开更多
关键词 multi-objective flexible job shop scheduling pareto archive set collaborative evolutionary crowd similarity
在线阅读 下载PDF
Time variant multi-objective linear fractional interval-valued transportation problem 被引量:1
6
作者 Dharmadas Mardanya Sankar Kumar Roy 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期111-130,共20页
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time... This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included. 展开更多
关键词 fractional transportation problem multi-objective optimization interval number time variant parameter fuzzy programming pareto optimal solution
在线阅读 下载PDF
Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi-objective Evolutionary Algorithm
7
作者 刘洪 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第2期36-40,共5页
A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set ... A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles. 展开更多
关键词 multi-objective design(MOD) multidisciplinary design optimization (MDO) evolutionary algorithm synergetic optimization decision making scheme interactive preference articulation pareto optimal set
在线阅读 下载PDF
A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming
8
作者 Zhiqing Meng Rui Shen Min Jiang 《American Journal of Operations Research》 2014年第6期331-339,共9页
In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty fu... In this paper, we present an algorithm to solve the inequality constrained multi-objective programming (MP) by using a penalty function with objective parameters and constraint penalty parameter. First, the penalty function with objective parameters and constraint penalty parameter for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Under some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove its convergence. Finally, numerical examples show that the algorithm may help decision makers to find a satisfactory solution to MP. 展开更多
关键词 multi-objective Programming PENALTY Function Objective PARAMETERS CONSTRAINT PENALTY Parameter pareto Weakly-Efficient solution
在线阅读 下载PDF
Optimality for Multi-Objective Programming Involving Arcwise Connected d-Type-I Functions
9
作者 Guolin Yu Min Wang 《American Journal of Operations Research》 2011年第4期243-248,共6页
This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected... This paper deals with the optimality conditions and dual theory of multi-objective programming problems involving generalized convexity. New classes of generalized type-I functions are introduced for arcwise connected functions, and examples are given to show the existence of these functions. By utilizing the new concepts, several sufficient optimality conditions and Mond-Weir type duality results are proposed for non-differentiable multi-objective programming problem. 展开更多
关键词 multi-objective Programming pareto Efficient solution Arcwise Connected d-Type-I FUNCTIONS OPTIMALITY Conditions Duality
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化
10
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II pareto多目标解集
在线阅读 下载PDF
混合绝缘气体变温吸附分离回收SF_6优化研究 被引量:1
11
作者 高春霄 赵睿恺 +2 位作者 邓帅 王傢俊 赵力 《低碳化学与化工》 北大核心 2025年第1期95-100,共6页
SF_(6)是一种强温室气体,从混合绝缘气体(SF_(6)体积分数15%、N_(2)体积分数85%)中分离回收SF_(6)兼具环境和经济效益。研究了变温吸附(TSA)循环回收SF_(6)。选取文献报道的SF_(6)在13X分子筛上的吸附数据,采用Langmuir模型对吸附数据... SF_(6)是一种强温室气体,从混合绝缘气体(SF_(6)体积分数15%、N_(2)体积分数85%)中分离回收SF_(6)兼具环境和经济效益。研究了变温吸附(TSA)循环回收SF_(6)。选取文献报道的SF_(6)在13X分子筛上的吸附数据,采用Langmuir模型对吸附数据进行拟合,建立了变温吸附循环模型,并采用遗传算法对循环性能指标进行多目标优化,采用TOPSIS法对Pareto最优解集进行决策。结果表明,Langmuir模型拟合结果可以较好预测吸附数据,决定系数(R^(2))大于0.98。在Pareto最优解集中,SF_(6)回收率和纯度与循环?效率呈现竞争关系。当目标函数中回收率、纯度和?效率的决策权重按照1:1:1分配时,决策变量中吸附温度取值为293.00 K,解吸温度取值为382.24 K,此时回收率、纯度和?效率分别为87.00%、32.08%和2.68%。变温吸附循环在SF_(6)捕集和回收中具有应用潜力。 展开更多
关键词 SF6回收 13X分子筛 TSA循环 多目标优化 pareto最优解集 TOPSIS法
在线阅读 下载PDF
用擂台赛法则构造多目标Pareto最优解集的方法 被引量:54
12
作者 郑金华 蒋浩 +1 位作者 邝达 史忠植 《软件学报》 EI CSCD 北大核心 2007年第6期1287-1297,共11页
针对多目标进化的特点,提出了用擂台赛法则(arena’s principle,简称AP)构造多目标Pareto最优解集的方法,论证了构造方法的正确性,分析了其时间复杂度为O(rmN)(0<m/N<1).理论上,当AP与Deb的算法以及Jensen的算法比较时(它们的时... 针对多目标进化的特点,提出了用擂台赛法则(arena’s principle,简称AP)构造多目标Pareto最优解集的方法,论证了构造方法的正确性,分析了其时间复杂度为O(rmN)(0<m/N<1).理论上,当AP与Deb的算法以及Jensen的算法比较时(它们的时间复杂度分别为O(rN2)和O(Nlog(r-1)N)),AP优于Deb的算法;当目标数r较大时(如r≥5),AP优于Jensen的算法;此外,当m/N较小时(如m/N≤50%),AP的效率与其他两种算法比较具有优势.对比实验结果表明,AP具有比其他两种算法更好的CPU时间效率.在应用中,AP可以被集成到任何基于Pareto的MOEA中,并能在较大程度上提高MOEA的运行效率. 展开更多
关键词 多目标进化 擂台赛法则 非支配集构造方法 pareto最优解集 运行效率
在线阅读 下载PDF
多目标网络相异路径的Pareto解及其遗传算法 被引量:8
13
作者 李引珍 何瑞春 +1 位作者 郭耀煌 刘斌 《系统工程学报》 CSCD 北大核心 2008年第3期264-268,共5页
网络相异路径一般是多目标约束路径问题,具有重要应用价值.然而,由于问题的难解性,总是利用妥协思想将其转换为单目标问题求解.本文建立了双目标相异路径的一种优化模型,给出了模型求解过程中伪理想点的概念,提出了基于小生境共享竞争... 网络相异路径一般是多目标约束路径问题,具有重要应用价值.然而,由于问题的难解性,总是利用妥协思想将其转换为单目标问题求解.本文建立了双目标相异路径的一种优化模型,给出了模型求解过程中伪理想点的概念,提出了基于小生境共享竞争复制算子的遗传算法,该算法可求解多目标优化问题的 Pareto 解集.最后,给出了一个计算分析实例. 展开更多
关键词 相异路径 多目标优化 pareto解集 遗传算法
在线阅读 下载PDF
求多目标优化问题Pareto最优解集的方法 被引量:7
14
作者 王海军 宋协武 +1 位作者 曹德欣 李苏北 《大学数学》 北大核心 2008年第5期74-78,共5页
主要讨论了无约束多目标优化问题Pareto最优解集的求解方法,其中问题的目标函数是C1连续函数.给出了Pareto最优解集的一个充要条件,定义了α强有效解,并结合区间分析的方法,建立了求解无约束多目标优化问题Pareto最优解集的区间算法,理... 主要讨论了无约束多目标优化问题Pareto最优解集的求解方法,其中问题的目标函数是C1连续函数.给出了Pareto最优解集的一个充要条件,定义了α强有效解,并结合区间分析的方法,建立了求解无约束多目标优化问题Pareto最优解集的区间算法,理论分析和数值结果均表明该算法是可靠和有效的. 展开更多
关键词 多目标优化 pareto最优解集 α强有效解 区间算法
在线阅读 下载PDF
基于多目标鲸鱼算法的配电网动态无功优化研究 被引量:1
15
作者 夏正龙 陈宇 +2 位作者 陆良帅 李灿 张成 《河南师范大学学报(自然科学版)》 CAS 北大核心 2025年第1期116-124,I0007,I0008,共11页
随着光伏、风电等分布式电源大量接入电力系统,对电网的安全性与经济性提出了新的挑战.为了适应风光出力的不确定性,考虑其接入位置对电网的影响,搭建了含风光的配电网动态无功优化模型.采用多目标鲸鱼算法对模型进行求解,将网损、电压... 随着光伏、风电等分布式电源大量接入电力系统,对电网的安全性与经济性提出了新的挑战.为了适应风光出力的不确定性,考虑其接入位置对电网的影响,搭建了含风光的配电网动态无功优化模型.采用多目标鲸鱼算法对模型进行求解,将网损、电压偏差进行归一化,选择了其欧氏距离最小的解作为Pareto最优解集的折中解.最后,通过IEEE标准33节点算例进行仿真分析,结果验证了分布式电源的并入能够有效减少系统网损、电压偏差,与其他传统多目标算法相比,所提的算法能够获得分布更均匀、收敛精度更高的Pareto解集. 展开更多
关键词 分布式电源 动态无功优化 pareto解集 多目标鲸鱼算法
在线阅读 下载PDF
结合BP神经网络和多目标粒子群算法的圆极化天线优化方法
16
作者 张子洋 储龙威 +1 位作者 胡海荣 赵国华 《无线通信技术》 2025年第1期19-22,26,共5页
为了提高天线优化的效率,本文提出了一种结合误差反向传播网络(BPNN)和多目标粒子群算法(MOPSO)的方法来优化多目标天线。通过BPNN模型来拟合天线参数和天线性能之间的非线性函数关系,将训练好的BPNN作为MOPSO的目标函数进行寻优,得到... 为了提高天线优化的效率,本文提出了一种结合误差反向传播网络(BPNN)和多目标粒子群算法(MOPSO)的方法来优化多目标天线。通过BPNN模型来拟合天线参数和天线性能之间的非线性函数关系,将训练好的BPNN作为MOPSO的目标函数进行寻优,得到帕累托解集,与之相对应的即为符合要求的天线尺寸。本文使用一个工作频率在1.5GHz-3.4GHz的圆极化天线来验证该方法的有效性,将天线的S11和AR作为优化目标。验证结果表明,通过对天线参数的优化,天线的-10dB带宽和3dB带宽均得到了扩展,优化成效显著。该算法可以实现对天线的优化,相较于传统的人工反复调试方法,节省了大量的计算资源,并且避免了为了优化一个子目标而使得另外一个子目标被负优化的情况出现。 展开更多
关键词 神经网络 多目标优化 帕累托解集 圆极化
在线阅读 下载PDF
基于MOEA/D的高温热管参数分析及多目标优化
17
作者 邢佳慧 倪浪 +2 位作者 向立平 李星佑 高帆 《节能技术》 2025年第1期92-96,F0003,共6页
为了提升高温热管工作性能,改进了传统热阻网络模型,利用MOEA/D算法优化蒸发段长度、壁厚和吸液芯厚度,以实现总热阻、传热极限和吸液芯质量流量最优,得到Pareto最优解。数值模拟结果表明:改进后的热阻网络模型与多组实验值对比总热阻... 为了提升高温热管工作性能,改进了传统热阻网络模型,利用MOEA/D算法优化蒸发段长度、壁厚和吸液芯厚度,以实现总热阻、传热极限和吸液芯质量流量最优,得到Pareto最优解。数值模拟结果表明:改进后的热阻网络模型与多组实验值对比总热阻误差均低于7%;总热阻受吸液芯厚度影响最为明显,吸液芯厚度越大总热阻越大;吸液芯质量流量与吸液芯厚度及壁厚成正比;传热极限与吸液芯厚度成反比;在750~850 K内,总热阻最佳可达0.0266 K/W,同实验值相比降低31%。本研究能提供更优的设计参数以提升热管工作性能。 展开更多
关键词 高温热管 热阻网络 参数优化 基于分解的多目标算法 pareto最优解集
在线阅读 下载PDF
多目标粒子群优化算法及其应用研究综述 被引量:8
18
作者 叶倩琳 王万良 王铮 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1107-1120,1232,共15页
现有研究较少涵盖最先进的多目标粒子群优化(MOPSO)算法.本研究介绍了多目标优化问题(MOPs)的研究背景,阐述了MOPSO的基本理论.根据特征将其分为基于Pareto支配、基于分解和基于指标的3类MOPSO算法,介绍了现有的经典算法.介绍相关评价指... 现有研究较少涵盖最先进的多目标粒子群优化(MOPSO)算法.本研究介绍了多目标优化问题(MOPs)的研究背景,阐述了MOPSO的基本理论.根据特征将其分为基于Pareto支配、基于分解和基于指标的3类MOPSO算法,介绍了现有的经典算法.介绍相关评价指标,并选取7个有代表性的算法进行性能分析.实验结果展示了传统MOPSO和3类改进的MOPSO算法各自的优势与不足,其中,基于指标的MOPSO在收敛性和多样性方面表现较优.对MOPSO算法在生产调度、图像处理和电力系统等领域的应用进行简要介绍.并探讨了MOPSO算法用于求解复杂优化问题的局限性及未来的研究方向. 展开更多
关键词 粒子群优化 多目标优化 pareto解集 收敛性 多样性
在线阅读 下载PDF
基于帕累托解集的水资源优化模型及应用
19
作者 曲永驭 蔡淑兵 +4 位作者 赵晶 倪红珍 余蔚卿 陈潇 陈根发 《水利水电技术(中英文)》 北大核心 2024年第9期38-48,共11页
【目的】为解决需水预测中信息缺失,忽略目标之间博弈过程等问题,研发了考虑水资源与城市发展之间相互联系与博弈特征的非线性多目标水资源优化模型。【方法】模型以用水总量最低和万元增加值用水量最小为目标,基于“四水四定”原则,对... 【目的】为解决需水预测中信息缺失,忽略目标之间博弈过程等问题,研发了考虑水资源与城市发展之间相互联系与博弈特征的非线性多目标水资源优化模型。【方法】模型以用水总量最低和万元增加值用水量最小为目标,基于“四水四定”原则,对不同年份、不同产业的水资源需求进行联合优化。针对传统的定额预测法忽视了目标间竞争过程的问题,使用遗传算法求解此非线性多目标模型的帕累托解集,生成一系列符合目标要求的水资源优化方案。【结果】模型应用于江苏省苏州市吴江区,得到100组非劣的水资源优化方案。结果显示:帕累托解集上的优化方案在区域用水总量上较定额法低6%~16%,万元增加值用水量较定额法降低19%~31%,优化效果显著。【结论】结果表明:帕累托解集可以全面展现出水与城市发展之间的竞争状态。该模型统筹考虑了水资源与人口、土地、城市、产业之间的关系,将其内在复杂的竞争关系清晰地展现出来,可以为实际应用提供更丰富的决策支持信息。 展开更多
关键词 帕累托解集 四水四定 多目标优化 定额法 水资源优化 水资源 影响因素 人口
在线阅读 下载PDF
供需失衡背景下非正式绿地更新潜力及策略研究——以福州市鼓台中心区为例
20
作者 曾燕芳 薛佳慧 +2 位作者 王则琦 林妍 李房英 《南方建筑》 CSCD 北大核心 2024年第5期83-94,共12页
我国经济社会发展步入新常态,城市发展开启存量更新模式。居民绿地需求与绿地空间不足之间的矛盾日益凸显,已有研究证明,非正式绿地在城市建成环境中具有良好适应性,能够有效解决城市面临的一系列社会和生态问题,具备较大发展潜力。聚... 我国经济社会发展步入新常态,城市发展开启存量更新模式。居民绿地需求与绿地空间不足之间的矛盾日益凸显,已有研究证明,非正式绿地在城市建成环境中具有良好适应性,能够有效解决城市面临的一系列社会和生态问题,具备较大发展潜力。聚焦于绿地低供高需的城市区域,以福州市鼓台中心区为例,通过实地调研挖掘供需失衡区范围内可利用的非正式绿地资源。从时、空间可用潜力两个维度确定影响非正式绿地发展潜力的评价指标,建立多目标优化模型;引入帕累托前沿理论,利用Matlab中非支配排序遗传算法求解得出调研区域内对非正式绿地进行更新改造的多个解集的优先层级。最后基于综合评估结果和三种不同的场地类型提出非正式绿地的更新策略,为高密度老旧城区绿地的存量更新发展提供借鉴。 展开更多
关键词 供需失衡 非正式绿地 帕累托最优解集 更新策略
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部