期刊文献+
共找到14,114篇文章
< 1 2 250 >
每页显示 20 50 100
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
1
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights
2
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 particle swarm optimization(pso) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization
3
作者 Mei Liang Zhuo Sun +3 位作者 Jiasong Liu Yongsheng Wang Lei Liang Long Zhang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期55-62,共8页
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order... Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values. 展开更多
关键词 Fractional-order particle swarm True-temperature inversion algorithm Multi-wavelength pyrometer
在线阅读 下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
4
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
在线阅读 下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
5
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
在线阅读 下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
6
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
在线阅读 下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
7
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION particle swarm INTELLIGENCE (pso) Ant Colony OPTIMIZATION (ACO) Genetic algorithm (GA)
在线阅读 下载PDF
Designing mixed <i>H</i><sub>2</sub>/<i>H</i><sub>&infin;</sub>structure specified controllers using Particle Swarm Optimization (PSO) algorithm
8
作者 Ayman N. Salman Younis Ali A. Khamees Farooq T. Taha 《Natural Science》 2014年第1期17-22,共6页
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t... This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA). 展开更多
关键词 MIXED H2/H∞ Optimal Control particle swarm Optimization algorithm Structure-Specified Controller
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
9
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
Expressway traffic flow prediction using chaos cloud particle swarm algorithm and PPPR model 被引量:2
10
作者 赵泽辉 康海贵 李明伟 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期328-335,共8页
Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf... Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting. 展开更多
关键词 expressway traffic flow forecasting projectionpursuit regression particle swarm algorithm chaoticmapping cloud model
在线阅读 下载PDF
Comprehensive Rainstorm Intensity Formula Based on Particle Swarm Algorithm
11
作者 赵吉武 邹长武 卢晓宁 《Meteorological and Environmental Research》 CAS 2010年第9期1-3,14,共4页
[Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to o... [Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to optimize the parameters of uniform comprehensive rainstorm intensity formula in every return period and directly construct the comprehensive rainstorm intensity formula.Moreover,took the comprehensive rainstorm intensity formula which was established by the hourly precipitation data in wuhu City as an example,the calculation result compared with the computed result of traditional method.[Result] The calculation result precision of particle swarm algorithm was higher than the traditional method,and the calculation process was simpler.[Conclusion] The particle swarm algorithm could directly construct the comprehensive rainstorm intensity formula. 展开更多
关键词 particle swarm algorithm Comprehensive rainstorm intensity formula OPTIMIZATION China
在线阅读 下载PDF
基于PSO-XGBoost的爆破振动峰值速度预测研究
12
作者 任高峰 邱浪 +4 位作者 徐琛 李吉民 胡英国 朱瑜劼 胡伟 《金属矿山》 北大核心 2025年第4期256-265,共10页
为实现爆破振动峰值速度的精准预测,减少爆破振动的危害,基于某爆破工程实测数据,通过基于决策树的特征重要性分析,选取了爆心距、炸药爆速、孔距、堵塞长度、孔深、单段药量6个变量作为输入特征,利用粒子群优化算法(PSO)对XGBoost模型... 为实现爆破振动峰值速度的精准预测,减少爆破振动的危害,基于某爆破工程实测数据,通过基于决策树的特征重要性分析,选取了爆心距、炸药爆速、孔距、堵塞长度、孔深、单段药量6个变量作为输入特征,利用粒子群优化算法(PSO)对XGBoost模型的决策树数目、决策树最大深度、学习率3个参数进行寻优,构建了PSO-XGBoost爆破振动峰值速度预测模型。通过对实例进行预测,得到预测结果的MSE、RMSE、R^(2)的值分别为1.44、1.16、0.91;通过与BPNN、AdaBoost、GBDT、RF、SVR模型的预测结果进行对比,PSO-XGBoost模型的预测性能最佳,预测结果最优。为了进一步推广应用预测成果,开发设计了一套爆破振动峰值速度预测系统。研究成果可为类似爆破工程振动预测提供一定的理论参考和实践指导。 展开更多
关键词 爆破振动 爆破振动峰值速度 粒子群优化算法 XGBoost算法 预测模型
在线阅读 下载PDF
基于改进的PSO风光互补公路隧道配置优化
13
作者 李金 林志 +3 位作者 于冲冲 尹恒 黄可心 刘超铭 《科学技术与工程》 北大核心 2025年第6期2578-2584,共7页
公路隧道里程的快速增加也标志着运营成本的逐渐上升,高昂的公路隧道电力运营成本问题急需解决。为了降低公路隧道电力运营成本,实现节能减排。在“双碳”背景下,从优化能源结构的角度思考,探究可再生能源供电系统在公路隧道上的应用前... 公路隧道里程的快速增加也标志着运营成本的逐渐上升,高昂的公路隧道电力运营成本问题急需解决。为了降低公路隧道电力运营成本,实现节能减排。在“双碳”背景下,从优化能源结构的角度思考,探究可再生能源供电系统在公路隧道上的应用前景,建立一个风、光、储互补发电系统。以一条498 m长的公路隧道负荷为算例,利用基于改进的粒子群算法(particle swarm optimization,PSO),以全生命周期的设备建设成本和维护成本最低为目标,以缺电负荷率、储能容量为约束,针对风光储互补系统进行寻优。结果表明:经改进的离散型自适应粒子群算法在第20次迭代后得到了最优解,标准粒子群算法在近第300次迭代得到最优解,离散型自适应粒子群算法寻优能力更强;改进后的离散型自适应粒子群算法对比标准的粒子群算法,寻优结果的风、光、储的设备投资使用成本降低了57.83万元,约17.37%。对比算例隧道一年的用电成本51.50万元,风、光、储互补系统的全生命周期成本为332.88万元,投资成本将在7 a的时间内收回,该风光互补系统的投资回报率是10.47%。在设备20 a的使用寿命内,风光储互补发电系统将节省697.12万元的用电费用。 展开更多
关键词 公路隧道运营成本 粒子群算法 风光储互补系统 可再生能源
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
14
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(pso-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
基于MOPSO和布局特征指标的钻机界面优化研究
15
作者 陈晓鹂 刘润余 +1 位作者 文国军 郝国成 《机械设计》 北大核心 2025年第2期166-172,共7页
为提升地质操作钻机的用户满意度,提出基于界面布局特征衡量指标构建的数学模型,并应用于多目标的粒子群算法求解,从而获取更合理的钻机界面布局。对钻机界面进行拓扑化并建立坐标系;基于衡量指标的计算对界面内元素进行范围约束并构建... 为提升地质操作钻机的用户满意度,提出基于界面布局特征衡量指标构建的数学模型,并应用于多目标的粒子群算法求解,从而获取更合理的钻机界面布局。对钻机界面进行拓扑化并建立坐标系;基于衡量指标的计算对界面内元素进行范围约束并构建数学模型;采用改进后的多目标的粒子群算法求解得到综合最优平衡解;将最优平衡解对应的坐标应用至界面并进行布局改进;通过SUS评估布局优化的有效性。以某型号钻机操纵界面为例进行试验,结果表明,优化后的界面可有效提升用户满意度。文中所提出的方法可作为一种从用户体验角度出发的复杂操控界面布局优化方法。 展开更多
关键词 人机界面 布局优化 多目标粒子群算法 钻机界面 布局特征衡量指标
在线阅读 下载PDF
基于K-PSO和StOMP的往复压缩机激振信号盲源分离
16
作者 王金东 马智超 +2 位作者 赵海洋 李彦阳 张宇 《机床与液压》 北大核心 2025年第3期228-234,共7页
在当前信号的盲源分离中,传统“两步法”易陷入局部最优解,并且其准确率会随采集信号数的增加或稀疏性的降低而大幅下降。针对上述问题,提出一种结合K均值-粒子群(K-PSO)和分段正交匹配追踪(StOMP)的稀疏分量分析方法。对采集信号执行K... 在当前信号的盲源分离中,传统“两步法”易陷入局部最优解,并且其准确率会随采集信号数的增加或稀疏性的降低而大幅下降。针对上述问题,提出一种结合K均值-粒子群(K-PSO)和分段正交匹配追踪(StOMP)的稀疏分量分析方法。对采集信号执行K均值聚类算法,将产生的结果反馈至PSO聚类中估计混合矩阵。在获得混合矩阵后,将其源信号矩阵转化成列数为1的向量,再通过分段正交匹配追踪算法重构源信号。将实测的往复压缩机正常信号和3种单一故障信号混合成2种复合故障信号,并对复合故障信号进行试验验证。结果表明:在计算时间方面,相较模糊C均值聚类(0.335 s)和K均值聚类(0.299 s),尽管K-PSO聚类方法牺牲了一部分效率(1.561 s),但在总体角度偏差和归一化均方根误差方面表现更优,具有更好的估计精度;相较最短路径法(0.123 s),StOMP算法同样牺牲效率(2.031 s),却获得更佳的相关系数和均方根误差,表现更好的分离重构能力。这说明,该方法在盲源分离中具有可行性和实际应用价值。 展开更多
关键词 往复压缩机 欠定盲源分离 K均值聚类 粒子群算法 分段正交匹配追踪
在线阅读 下载PDF
基于INSPSO-INC算法的光伏MPPT控制策略
17
作者 陈刚 刘旭阳 +1 位作者 李国雄 刘亚雄 《智慧电力》 北大核心 2025年第2期58-64,共7页
在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT... 在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT)控制策略。研究引入动态惯性权重、异步学习因子和自然选择机制,在分析寻优过程中对惯性权重和学习因子实时调整,并对群体进行自然选择操作以提高算法的全局寻优性能。仿真分析表明,所提算法在收敛速度和精度方面优势明显,且在追踪到最大功率点后的输出功率更平稳。 展开更多
关键词 光伏阵列 MPPT 动态部分遮阴 自然选择粒子群算法
在线阅读 下载PDF
基于PSO-SLM和Delta-Sigma调制的峰均功率比降低技术
18
作者 张颖 苏洁 +2 位作者 汪颖 王廷云 庞拂飞 《工业控制计算机》 2025年第2期145-147,共3页
为了降低正交频分复用系统信号的峰均功率比,提出基于粒子群优化算法的选择性映射法联合Delta-Sigma调制的方案。该方法使用PSO算法求得SLM算法中最优相位因子,并与频域信号点乘,经过快速傅里叶逆变换得到时域信号,再对时域信号进行Delt... 为了降低正交频分复用系统信号的峰均功率比,提出基于粒子群优化算法的选择性映射法联合Delta-Sigma调制的方案。该方法使用PSO算法求得SLM算法中最优相位因子,并与频域信号点乘,经过快速傅里叶逆变换得到时域信号,再对时域信号进行Delta-Sigma调制。仿真结果表明,在降低PAPR和提高系统信噪比方面,所提方案相较于传统SLM算法展示出显著优势。具体而言,在互补累计分布函数为0.005时,所提出的PSO-SLM联合DSM方案较传统的SLM算法,其PAPR降低了1.7 dB,同时,在过采样率为800,误码率为10-3时,实现了4.2 dB的信噪比性能提升。 展开更多
关键词 正交频分复用 粒子群优化算法 选择性映射法 Delta-Sigma调制 峰均功率比
在线阅读 下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
19
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
在线阅读 下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
20
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(pso chaos theory cloud model hybrid optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部