期刊文献+
共找到145篇文章
< 1 2 8 >
每页显示 20 50 100
Surface Quality Evaluation of Fluff Fabric Based on Particle Swarm Optimization Back Propagation Neural Network 被引量:1
1
作者 MA Qiurui LIN Qiangqiang JIN Shoufeng 《Journal of Donghua University(English Edition)》 EI CAS 2019年第6期539-546,共8页
Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is p... Aiming at the problem that back propagation(BP)neural network predicts the low accuracy rate of fluff fabric after fluffing process,a BP neural network model optimized by particle swarm optimization(PSO)algorithm is proposed.The sliced image is obtained by the principle of light-cutting imaging.The fluffy region of the adaptive image segmentation is extracted by the Freeman chain code principle.The upper edge coordinate information of the fabric is subjected to one-dimensional discrete wavelet decomposition to obtain high frequency information and low frequency information.After comparison and analysis,the BP neural network was trained by high frequency information,and the PSO algorithm was used to optimize the BP neural network.The optimized BP neural network has better weights and thresholds.The experimental results show that the accuracy of the optimized BP neural network after applying high-frequency information training is 97.96%,which is 3.79%higher than that of the unoptimized BP neural network,and has higher detection accuracy. 展开更多
关键词 WOOL FABRIC feature extraction WAVELET transform particle swarm optimization(PSO) BACK propagation(BP)neural network
在线阅读 下载PDF
A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines
2
作者 Xiyang Li Bin Cheng +2 位作者 Hui Zhang Xianghan Zhang Zhi Yun 《Energy Engineering》 EI 2021年第6期1869-1886,共18页
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi... With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades. 展开更多
关键词 Support vector machine back propagation neural network particle swarm optimization blade icing assessment
在线阅读 下载PDF
Auto recognition of carbonate microfacies based on an improved back propagation neural network
3
作者 王玉玺 刘波 +4 位作者 高计县 张学丰 李顺利 刘建强 田泽普 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3521-3535,共15页
Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation... Though traditional methods could recognize some facies, e.g. lagoon facies, backshoal facies and foreshoal facies, they couldn't recognize reef facies and shoal facies well. To solve this problem, back propagation neural network(BP-ANN) and an improved BP-ANN with better stability and suitability, optimized by a particle swarm optimizer(PSO) algorithm(PSO-BP-ANN) were proposed to solve the microfacies' auto discrimination of M formation from the R oil field in Iraq. Fourteen wells with complete core, borehole and log data were chosen as the standard wells and 120 microfacies samples were inferred from these 14 wells. Besides, the average value of gamma, neutron and density logs as well as the sum of squares of deviations of gamma were extracted as key parameters to build log facies(facies from log measurements)-microfacies transforming model. The total 120 log facies samples were divided into 12 kinds of log facies and 6 kinds of microfacies, e.g. lagoon bioclasts micrite limestone microfacies, shoal bioclasts grainstone microfacies, backshoal bioclasts packstone microfacies, foreshoal bioclasts micrite limestone microfacies, shallow continental micrite limestone microfacies and reef limestone microfacies. Furthermore, 68 samples of these 120 log facies samples were chosen as training samples and another 52 samples were gotten as testing samples to test the predicting ability of the discrimination template. Compared with conventional methods, like Bayes stepwise discrimination, both the BP-ANN and PSO-BP-ANN can integrate more log details with a correct rate higher than 85%. Furthermore, PSO-BP-ANN has more simple structure, smaller amount of weight and threshold and less iteration time. 展开更多
关键词 carbonate microfacies quantitative recognition bayes stepwise discrimination backward propagation neural network particle swarm optimizer
在线阅读 下载PDF
Construction of Early-warning Model for Plant Diseases and Pests Based on Improved Neural Network 被引量:2
4
作者 曹志勇 邱靖 +1 位作者 曹志娟 杨毅 《Agricultural Science & Technology》 CAS 2009年第6期135-137,154,共4页
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ... By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform. 展开更多
关键词 Backward propagation neural network particle swarm algorithm Plant diseases and pests Early-warning model
在线阅读 下载PDF
基于不同算法优化的back propagation神经网络在三元乙丙橡胶混炼胶门尼黏度预测中的应用 被引量:2
5
作者 李高伟 李佳 +3 位作者 朱金梅 鉴冉冉 苗清 曾宪奎 《合成橡胶工业》 CAS 北大核心 2023年第6期488-494,共7页
分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持... 分别采用遗传算法(GA)和粒子群算法(PSO)优化的back propagation(BP)神经网络建立了三元乙丙橡胶(EPDM)混炼胶门尼黏度的预测模型,并对预测结果的误差进行了对比分析。结果表明,两种算法优化后的BP神经网络模型的预测值与实测值均保持较高的拟合度和相关性;相比单一的BP神经网络,GA优化后BP神经网络模型的精度提高了58.9%,PSO优化后BP神经网络模型的精度提高了3.57%,说明两种算法优化后的预测模型,特别是GA优化的BP神经网络预测模型对EPDM混炼胶门尼黏度的预测精度改善明显。 展开更多
关键词 back propagation神经网络 遗传算法 粒子群算法 三元乙丙橡胶 混炼胶 门尼黏度 预测模型
在线阅读 下载PDF
DDoS Attack Detection Scheme Based on Entropy and PSO-BP Neural Network in SDN 被引量:8
6
作者 Zhenpeng Liu Yupeng He +1 位作者 Wensheng Wang Bin Zhang 《China Communications》 SCIE CSCD 2019年第7期144-155,共12页
SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a diff... SDN (Software Defined Network) has many security problems, and DDoS attack is undoubtedly the most serious harm to SDN architecture network. How to accurately and effectively detect DDoS attacks has always been a difficult point and focus of SDN security research. Based on the characteristics of SDN, a DDoS attack detection method combining generalized entropy and PSOBP neural network is proposed. The traffic is pre-detected by the generalized entropy method deployed on the switch, and the detection result is divided into normal and abnormal. Locate the switch that issued the abnormal alarm. The controller uses the PSO-BP neural network to detect whether a DDoS attack occurs by further extracting the flow features of the abnormal switch. Experiments show that compared with other methods, the detection accurate rate is guaranteed while the CPU load of the controller is reduced, and the detection capability is better. 展开更多
关键词 software-defined networkING distributed DENIAL of service ATTACKS generalized information ENTROPY particle swarm optimization back propagation neural network ATTACK detection
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
7
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(APSO)算法 反向传播神经网络(BPNN) 腐蚀速率 预测模型
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
8
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
基于GRA-IPSO-BPNN的大中型水电项目投资估算模型研究 被引量:6
9
作者 牛东晓 孙丽洁 +4 位作者 周原冰 李鹏 田竹肖 吴佳玮 孙蔚 《全球能源互联网》 2020年第4期404-411,共8页
水电项目投资估算对投资者安排融资和管理项目具有现实意义。在此背景下,提出基于灰色关联分析的改进粒子群优化BP神经网络(gray relation analysis,GRA;improved partical swarm optimization,IPSO;back propagation neural network,BP... 水电项目投资估算对投资者安排融资和管理项目具有现实意义。在此背景下,提出基于灰色关联分析的改进粒子群优化BP神经网络(gray relation analysis,GRA;improved partical swarm optimization,IPSO;back propagation neural network,BPNN)的大中型水电项目投资估算模型。首先,借助文献回顾法和专家经验法初选影响水电项目投资的工程特征,并利用灰色关联分析筛选关键工程特征参数;然后,构建基于IPSO算法优化的BPNN模型实现水电项目投资估算;最后,通过算例分析验证了基于GRA-IPSO-BPNN的投资估算模型具有实用性和可靠性。根据实证结果,IPSO-BPNN模型相较于BPNN和PSO-BPNN,预测误差更小,可以实现大中型水电项目准确、快速、有效的投资估算。 展开更多
关键词 水电项目 投资估算 灰色关联分析 改进粒子群 BP神经网络
在线阅读 下载PDF
基于PSO-BP神经网络的5G基站位置确定方法
10
作者 杜莹 韦原原 蒲欢欢 《测绘工程》 2025年第1期47-52,67,共7页
5G基站位置的确定对室内定位服务和网络安全有着重要意义。首先对5G信道状态信息CSI进行Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立5G CSI和距离的映射关系,最后基于模型预测的距离实现对5G... 5G基站位置的确定对室内定位服务和网络安全有着重要意义。首先对5G信道状态信息CSI进行Hample滤波和降维,然后构建基于粒子群优化PSO的误差反向传播BP神经网络信号损耗模型,建立5G CSI和距离的映射关系,最后基于模型预测的距离实现对5G AP的探测。实验采用室外探测室外和室内5G AP的实测数据,结果表明,与BP神经网络相比,基于PSO-BP神经网络的距离预测值更加精确,室外探测室外和室内5G AP的精度分别达到了0.32 m和0.96 m。随着测量方向数的提升,5G AP的定位精度不断提升。当方向数达到5个时,精度提升最为显著。 展开更多
关键词 信道状态信息 AP探测 粒子群优化 BP神经网络
在线阅读 下载PDF
基于PSO-LSSVM-BP模型的高边坡力学参数反分析及稳定性评价 被引量:2
11
作者 徐卫亚 陈世壮 +5 位作者 张贵科 胡明涛 黄威 许晓逸 张海龙 王如宾 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期52-59,共8页
基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数... 基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数据作为输入信息,通过反分析获得高边坡岩体力学参数,将反分析参数用于FLAC3D位移数值计算,结果表明模拟结果与监测数据吻合较好,验证了该模型的可行性和有效性。基于PSO-LSSVM-BP模型,对不同蓄水位下两河口水电站进水口高边坡稳定性进行了评价,发现水位是影响边坡稳定性的主要因素,随着水位上升,边坡位移逐渐增大,其表面和断层处损伤程度加深,边坡局部点安全系数有所下降,但整体点安全系数均大于1.30,有一定安全裕度。 展开更多
关键词 高边坡 力学参数反分析 粒子群优化 最小二乘向量机 反向传播神经网络 两河口水电站
在线阅读 下载PDF
基于多机场终端区交通态势的航班延误预测 被引量:2
12
作者 张兆宁 查子奇 《科学技术与工程》 北大核心 2024年第12期5220-5226,共7页
为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势... 为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势进行分析的基础上,建立6个描述终端区交通态势的指标。接着,构建反向传播(back propagation,BP)神经网络航班延误预测模型,将终端区交通态势指标、航班信息和天气环境数据等作为输入,航班延误时间作为输出,并利用粒子群优化算法(particle swarm optimization,PSO)优化BP神经网络进行训练。通过实例验证和分析,基于多机场终端区交通态势的航班延误预测能够有效提高预测准确率,同时,通过粒子群优化BP神经网络的预测模型预测准确率均高于一般的考虑交通态势的BP和遗传算法优化的BP神经网络模型(genetic algorithm and back propagation,GA-BP)。 展开更多
关键词 多机场 航班延误预测 终端区交通态势 反向传播(BP)神经网络 粒子群优化算法(PSO)
在线阅读 下载PDF
基于PIWT-IPSO-BP的污水厂出水COD含量的预测模型 被引量:1
13
作者 张净 窦慧芸 +1 位作者 蒋武 刘晓梅 《中国农村水利水电》 北大核心 2024年第9期15-20,28,共7页
在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物... 在农业灌溉的领域中,化学需氧量(Chemical Oxygen Demand,COD)的测定是衡量水体中有机物污染程度的一个重要指标。当COD浓度超过60mg/L时,其对土壤质量和农作物的生长产生的负面影响成为不容忽视的问题。这一现象可能会严重影响农作物的产量和质量,进而对农作物生产的可持续性构成挑战。因此,有必要精确预测污水处理厂出水COD浓度的变化趋势,从而促进其在农业灌溉中的有效应用。研究结合了改进的小波变换、改进的粒子群优化(Improved Particle Swarm Optimization,IPSO)算法和反向传播BP(Back Propagation,BP)神经网络作为预测模型。鉴于COD受到众多因素的影响,这些因素之间存在复杂的耦合关系,采用PCA进行特征提取。考虑到数据采集的过程中不可避免的噪声干扰,应用小波降噪对原始数据进行处理,以确保数据质量,提高模型准确性。在此基础上,基于BP神经网络算法构建污水处理厂出水COD的预测模型。为了解决BP神经网络参数选择可能遇到的盲目性问题,引入改进的粒子群算法对模型进行参数优化,以提高预测精度。实验结果表明,提出的PIWT-IPSO-BP模型预测效果良好,其平均绝对误差、均方根误差和决定系数分别为0.222、0.386和0.984。该模型在一定程度上改善了数据噪声、多因子制约等问题,为污水循环利用技术应用于农业灌溉方面提供了参考依据。 展开更多
关键词 化学需氧量 预测模型 小波变换 粒子群优化算法 BP神经网络
在线阅读 下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
14
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子群优化算法 本征模函数
在线阅读 下载PDF
基于 SPA-PSO-BP 的花生高光谱图像分类方法研究 被引量:3
15
作者 杨洋 徐熙平 +3 位作者 薛航 张宁 张越 索科 《激光技术》 CAS CSCD 北大核心 2024年第4期556-564,共9页
为了提高可见-近红外(VNIR)高光谱花生图像分类的准确率和减少分类检测的运算时间,提出了基于连续投影算法(SPA)融合粒子群算法优化后向传播神经网络(PSO-BP)的分类检测模型。利用高光谱成像系统采集了7个花生品种样本的VNIR光谱数据,... 为了提高可见-近红外(VNIR)高光谱花生图像分类的准确率和减少分类检测的运算时间,提出了基于连续投影算法(SPA)融合粒子群算法优化后向传播神经网络(PSO-BP)的分类检测模型。利用高光谱成像系统采集了7个花生品种样本的VNIR光谱数据,并进行了背景分割和光谱信息的提取,去除受噪声和杂散光影响大的波段后,运用Savitzky-Golay卷积平滑对400 nm~900 nm范围的波长进行预处理;采用SPA降维及均方根误差值选择了25个特征波长,同时利用PSO-BP神经网络的初始权重和阈值,构建PSO-BP模型作为分类器进行了实验,取得了测试集识别准确率为98.7%、kappa系数为0.98及遗漏误差为3的数据。结果表明,相较4个对比方法构建的分类模型,该模型的准确率分别提高了2.1%、8.6%、3.9%和4.3%。该方法在基于高光谱成像的花生品种分类技术中具有很好的应用前景,为花生品种的高精度、快速无损分类提供了新思路。 展开更多
关键词 光谱学 图像分类 连续投影算法 粒子群算法 后向传播神经网络 花生
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
16
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术 被引量:1
17
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子群-反向传播神经网络算法 织物质量预测
在线阅读 下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究 被引量:1
18
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
在线阅读 下载PDF
基于BP神经网络的上海生鲜农产品物流需求预测 被引量:10
19
作者 郝杨杨 邹宇 《上海海事大学学报》 北大核心 2024年第1期39-45,69,共8页
针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarm optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型。引入对立学习机制、自适应惯性权重... 针对传统的生鲜农产品物流非线性需求预测模型收敛速度慢、精度低等问题,构建由改进粒子群(improved particle swarm optimization,IPSO)算法优化反向传播(back propagation,BP)神经网络的预测模型。引入对立学习机制、自适应惯性权重、非对称学习因子提升粒子群(particle swarm optimization,PSO)算法的初始解质量,平衡算法的局部开发和全局搜索能力;利用IPSO算法优化BP神经网络的权值和阈值,解决BP神经网络收敛速度慢、容易陷入局部最优等问题。通过上海生鲜农产品物流需求预测实例对模型的有效性进行验证,结果显示:IPSO-BP神经网络模型在预测精度及收敛速度上均明显优于传统PSO-BP神经网络和BP神经网络模型。 展开更多
关键词 冷链物流 需求预测 改进粒子群(IPSO)算法 反向传播(BP)神经网络
在线阅读 下载PDF
基于MFO-BPNN的螺旋钻机钻速预测研究
20
作者 李嘉辉 王英 +3 位作者 郑荣跃 叶军 赵京昊 陈立 《机电工程》 CAS 北大核心 2024年第4期633-642,共10页
针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了... 针对利用现有经验公式所建立的螺旋钻机钻速预测模型存在准确度不足的问题,提出了一种基于飞蛾扑火算法(MFO)的反向传播神经网络(BPNN)钻速预测模型。首先,对MFO算法的基本原理进行了研究,构建了MFO算法优化BPNN的具体流程;接着,采集了江苏无锡某施工现场钻探数据,并分析了钻速影响因素,运用小波阈值降噪、归一化和灰色关联度分析等系列方法对采集数据进行了预处理,得到了训练和测试集;然后,将MFO算法运用于神经网络的权值和阈值训练,以代替原有梯度下降法,建立了MFO-BPNN钻速预测模型;最后,对上述预测模型与BPNN模型、遗传算法优化反向传播神经网络(GA-BPNN)模型以及粒子群优化算法优化反向传播神经网络(PSO-BPNN)模型的预测结果和评价指标进行了详细的对比分析。研究结果表明:运用MFO-BPNN建立的钻速预测模型,其可靠性达到了91.65%,其决定系数(R 2)优于其他3种预测模型,3项误差指标也是其中最低的,说明该模型的预测精度良好,适合于桩基础工程的实际应用,可为复杂因素影响下的钻速预测提供一种新思路。 展开更多
关键词 螺旋钻机 钻速预测 飞蛾扑火算法 反向传播神经网络 遗传算法优化反向传播神经网络 粒子群优化算法优化反向传播神经网络 决定系数 桩基础工程
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部