Engineering facilities subjected to natural hazards(such as winds and earthquakes) will result in risk when any designed system(i.e.capacity) will not be able to meet the performance required(i.e.demand).Risk might be...Engineering facilities subjected to natural hazards(such as winds and earthquakes) will result in risk when any designed system(i.e.capacity) will not be able to meet the performance required(i.e.demand).Risk might be expressed either as a likelihood of damage or potential financial loss.Engineers tend to make use of the former(i.e.damage).Nevertheless,other non-technical stakeholders cannot get useful information from damage.However,if financial risk is expressed on the basis of probable monetary loss,it will be easily understood by all.Therefore,it is necessary to develop methodologies which communicate the system capacity and demand to financial risk,Incremental dynamic analysis(IDA) was applied in a performance-based earthquake engineering context to do hazard analysis,structural analysis,damage analysis and loss analysis of a reinforced concrete(RC) frame structure.And the financial implications of risk were expressed by expected annual loss(EAL).The quantitative risk analysis proposed is applicable to any engineering facilities and any natural hazards.It is shown that the results from the IDA can be used to assess the overall financial risk exposure to earthquake hazard for a given constructed facility.The computational IDA-EAL method will enable engineers to take into account the long-term financial implications in addition to the construction cost.Consequently,it will help stakeholders make decisions.展开更多
This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) ...This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) fields. The simple method of PBEE encompasses three areas of seismic risk which include seismic hazard, structural analysis, and loss models. The aim of the PBEE process, entitled as FEMA P-58, is to present essential data needed to make a rational decision regarding predicted performance, where various sources of uncertainties are involved. In developing countries, the lack of suitable real ground motions corresponding to site characteristics and seismicity particularly for larger intensities and the scarcity of demands, which makes it hard to identify the seismic capacity of a structure, is the main our motivation of using the FEMA method. In this paper, the method of FEMA P-58 is investigated, in terms of available tools and required data, in such a way that it will be applicable for developing countries which are located in high seismic hazard zones. To achieve this goal, three steel moment-resisting buildings with low and high ductility, and three steel braced-frame buildings are selected as case studies. The mean annual loss is estimated by the available software, Performance Assessment Calculation Tool (PACT). The achieved results, i.e. the loss curves, will provide a simple means by which the engineers can quantify and communicate seismic performance to other stakeholders. In the case study buildings, the braced one has less annual losses in comparison with other investigated cases, and the structure with high ductility can be considered as the next ones. Execution cost of each building should be considered by contractors. Also, seismic fragility curves of structures for various limit states, as well, the corresponding loss models are identified as the most essential data towards application of the investigated PBEE process.展开更多
基金Project(2011CB013804) supported by the National Basic Research Program of ChinaProject(50925828) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘Engineering facilities subjected to natural hazards(such as winds and earthquakes) will result in risk when any designed system(i.e.capacity) will not be able to meet the performance required(i.e.demand).Risk might be expressed either as a likelihood of damage or potential financial loss.Engineers tend to make use of the former(i.e.damage).Nevertheless,other non-technical stakeholders cannot get useful information from damage.However,if financial risk is expressed on the basis of probable monetary loss,it will be easily understood by all.Therefore,it is necessary to develop methodologies which communicate the system capacity and demand to financial risk,Incremental dynamic analysis(IDA) was applied in a performance-based earthquake engineering context to do hazard analysis,structural analysis,damage analysis and loss analysis of a reinforced concrete(RC) frame structure.And the financial implications of risk were expressed by expected annual loss(EAL).The quantitative risk analysis proposed is applicable to any engineering facilities and any natural hazards.It is shown that the results from the IDA can be used to assess the overall financial risk exposure to earthquake hazard for a given constructed facility.The computational IDA-EAL method will enable engineers to take into account the long-term financial implications in addition to the construction cost.Consequently,it will help stakeholders make decisions.
文摘This paper investigates a simple approach proposed towards performance-based earthquake engineering (PBEE) which has potential applications to the performance-based design (PBD) and performance-based assessment (PBA) fields. The simple method of PBEE encompasses three areas of seismic risk which include seismic hazard, structural analysis, and loss models. The aim of the PBEE process, entitled as FEMA P-58, is to present essential data needed to make a rational decision regarding predicted performance, where various sources of uncertainties are involved. In developing countries, the lack of suitable real ground motions corresponding to site characteristics and seismicity particularly for larger intensities and the scarcity of demands, which makes it hard to identify the seismic capacity of a structure, is the main our motivation of using the FEMA method. In this paper, the method of FEMA P-58 is investigated, in terms of available tools and required data, in such a way that it will be applicable for developing countries which are located in high seismic hazard zones. To achieve this goal, three steel moment-resisting buildings with low and high ductility, and three steel braced-frame buildings are selected as case studies. The mean annual loss is estimated by the available software, Performance Assessment Calculation Tool (PACT). The achieved results, i.e. the loss curves, will provide a simple means by which the engineers can quantify and communicate seismic performance to other stakeholders. In the case study buildings, the braced one has less annual losses in comparison with other investigated cases, and the structure with high ductility can be considered as the next ones. Execution cost of each building should be considered by contractors. Also, seismic fragility curves of structures for various limit states, as well, the corresponding loss models are identified as the most essential data towards application of the investigated PBEE process.