The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite s...The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.展开更多
Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotio...Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.展开更多
Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot ...Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.展开更多
In this study a novel synthetic aperture radar(SAR)scattering model for sea surface with breaking waves is proposed.Compared with existing models,the proposed model considers an empirical relationship between wind spe...In this study a novel synthetic aperture radar(SAR)scattering model for sea surface with breaking waves is proposed.Compared with existing models,the proposed model considers an empirical relationship between wind speed and wave breaking scattering to present the contribution of wave breaking.Moreover,the scattering weight factor p,and wave breaking rate q,are performed to present the contribution of the quasi-specular scattering term,Bragg scattering term,and wave breaking scattering term to the total scattering from the sea surface.To explore the modeling accuracy of sea-surface scattering,a simulated normalized radar cross-section(NRCS)and measured NRCS are compared.The proposed model generated the simulated NRCS and a matching GF-3 dataset was used for the measured NRCS.It was revealed that the performance of the VV polarization of our model was much better than that of HH polarization,with a correlation of 0.91,bias of-0.14 dB,root mean square error(RMSE)of 1.26 dB,and scattering index(SI)of-0.11.In addition,the novel model is explored and compared with the geophysical model of CMODs and satellite-measured NRCS from GF-3 SAR wave mode imagery.For an incidence angle 40°–41°,the relationship between the NRCS and wind speed,relative wind direction is proposed.As with the SAR-measured NRCS,the performance of VV polarization was much better than HH polarization,with a correlation of 0.99,bias of-0.25 dB,RMSE of 0.64 dB,and SI of-0.04.展开更多
Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has ...Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has provided precise surface deformation in the along-track(AT)direction.Integration of the InSAR and MAI methods enables precise measurement of the two-dimensional(2D)deformation from an interferometric pair;recently,the integration of ascending and descending pairs has allowed the observation of precise three-dimensional(3D)deformation.Precise 3D deformation measurement has been applied to better understand geological events such as earthquakes and volcanic eruptions.The surface deformation related to the 2016 Kumamoto earthquake was large and complex near the fault line;hence,precise 3D deformation retrieval had not yet been attempted.The objectives of this study were to①perform a feasibility test of precise 3D deformation retrieval in large and complex deformation areas through the integration of offset-based unwrapped and improved multiple-aperture SAR interferograms and②observe the 3D deformation field related to the 2016 Kumamoto earthquake,even near the fault lines.Two ascending pairs and one descending the Advanced Land Observing Satellite-2(ALOS-2)Phased Array-type L-band Synthetic Aperture Radar-2(PALSAR-2)pair were used for the 3D deformation retrieval.Eleven in situ Global Positioning System(GPS)measurements were used to validate the 3D deformation measurement accuracy.The achieved accuracy was approximately 2.96,3.75,and 2.86 cm in the east,north,and up directions,respectively.The results show the feasibility of precise 3D deformation measured through the integration of the improved methods,even in a case of large and complex deformation.展开更多
Located on the mountainous area, Kelok Sembilan flyover area in West Sumatra, Indonesia has a long history of land deformation, therefore monitoring and analyzing as continuously is a necessity to minimize the impact....Located on the mountainous area, Kelok Sembilan flyover area in West Sumatra, Indonesia has a long history of land deformation, therefore monitoring and analyzing as continuously is a necessity to minimize the impact. Notably, in the rainy season, the land deformation occurs along this area. The zone is crucial as the center of transportation connection in the middle of Sumatra. Quasi-Persistent Scatterer (Q-PS) Interferometry technique was applied for extracting information of land deformation on the field from time to time. Not only does the method have high performance for detecting land deformation but also improve the number of PS point, especially in a non-urban area. This research supported by 90 scenes of Sentinel-1A (C-band) taken from October 2014 to November 2017 for ascending and descending orbit with VV and VH polarization in 5 × 20 m (range × azimuth) resolution. Both satellite orbits detected two critical locations of land deformation namely as zone A and Zone B, which located in positive steep slope where there is more than 500 mm movement in the Line of Sight (LOS) during acquisition time. Deformations in the vertical and horizontal direction for both zone, are 778.9 mm, 795.7 mm and 730.5 mm, 751.7 mm, respectively. Finally, the results were confirmed by ground truth data using Unmanned Aerial Vehicle (UAV) observation.展开更多
Satellite synthetic aperture radar (SAR) inter-ferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was recl...Satellite synthetic aperture radar (SAR) inter-ferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was reclaimed from the sea and therefore certain ground settlement in the area has been expected. A pair of ERS-2 SAR images spanning nearly a year is used in the study. The high spatial resolution (20 m×20 m) ground settlement map derived indicates that the settlement that occurred in the area over the time period is as large as 50 mm. The SAR measurement results agree with the levelling measurements at some benchmarks in the area to well within 1 cm(rms error),and the overall correlation between the two types of results is 0.89. The paper presents some brief background of inter-ferometric SAR, and outlines the data processing methods and results.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generat...The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generated under a wide variety of multilook factors and with very different noise level.However,the filter is a bit complicated and its application is still very limited.We present the designing and implementation of the variance-dependent Goldstein radar interferogram filtering,emphasizing on the logic flow,the generation of look-up table,the determination of filtering parameter,and the handling of edge information loss.Experiments with real interferograms are provided to demonstrate the applications of the designed filtering.Comparisons with the result of the coherence-dependent Goldstein filter show that improvements from 18.4% to 36.9% are achieved when the variance-dependent filter is used,and the noisier the interferogram,the greater the improvement.展开更多
Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection metho...Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.展开更多
This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic ap...This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.展开更多
基金supported by the State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration(CEA) (no. LED2010A02,LED2008A06)
文摘The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.
基金supported by the National Natural Science Foundation for Young Scientists of China (61101182)
文摘Micromotion is an important target feature, although the target micromotion has an unfavorable influence on the synthetic aperture radar (SAR) image interpretation due to defocusing. This paper introduces micromotion parameters into the scattering center model to obtain a hybrid micromotion-scattering center model, and then proposes an optimization algorithm based on the maximal likelihood estimation to solve the model for jointly obtaining target motion and scattering parameters. Initial value estimation methods using targets' ghost images are then presented to guarantee the global and fast convergence. Simulation results show the effectiveness of the proposed algorithm especially in high precision estimation and multiple targets processing.
基金supported by the National Natural Science Foundation of China(60871070)
文摘Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.
基金The National Natural Science Foundation of China under contract No.4197060692。
文摘In this study a novel synthetic aperture radar(SAR)scattering model for sea surface with breaking waves is proposed.Compared with existing models,the proposed model considers an empirical relationship between wind speed and wave breaking scattering to present the contribution of wave breaking.Moreover,the scattering weight factor p,and wave breaking rate q,are performed to present the contribution of the quasi-specular scattering term,Bragg scattering term,and wave breaking scattering term to the total scattering from the sea surface.To explore the modeling accuracy of sea-surface scattering,a simulated normalized radar cross-section(NRCS)and measured NRCS are compared.The proposed model generated the simulated NRCS and a matching GF-3 dataset was used for the measured NRCS.It was revealed that the performance of the VV polarization of our model was much better than that of HH polarization,with a correlation of 0.91,bias of-0.14 dB,root mean square error(RMSE)of 1.26 dB,and scattering index(SI)of-0.11.In addition,the novel model is explored and compared with the geophysical model of CMODs and satellite-measured NRCS from GF-3 SAR wave mode imagery.For an incidence angle 40°–41°,the relationship between the NRCS and wind speed,relative wind direction is proposed.As with the SAR-measured NRCS,the performance of VV polarization was much better than HH polarization,with a correlation of 0.99,bias of-0.25 dB,RMSE of 0.64 dB,and SI of-0.04.
基金This study was funded by the Korea Meteorological Administration Research and Development Program(KMI2017-9060)the National Research Foundation of Korea funded by the Korea government(NRF-2018M1A3A3A02066008)+1 种基金In addition,the ALOS-2 PALSAR-2 data used in this study are owned by the Japan Aerospace Exploration Agency(JAXA)and were provided through the JAXA’s ALOS-2 research program(RA4,PI No.1412)The GPS data were provided by the Geospatial Information Authority of Japan.
文摘Conventional synthetic aperture radar(SAR)interferometry(InSAR)has been successfully used to precisely measure surface deformation in the line-of-sight(LOS)direction,while multiple-aperture SAR interferometry(MAI)has provided precise surface deformation in the along-track(AT)direction.Integration of the InSAR and MAI methods enables precise measurement of the two-dimensional(2D)deformation from an interferometric pair;recently,the integration of ascending and descending pairs has allowed the observation of precise three-dimensional(3D)deformation.Precise 3D deformation measurement has been applied to better understand geological events such as earthquakes and volcanic eruptions.The surface deformation related to the 2016 Kumamoto earthquake was large and complex near the fault line;hence,precise 3D deformation retrieval had not yet been attempted.The objectives of this study were to①perform a feasibility test of precise 3D deformation retrieval in large and complex deformation areas through the integration of offset-based unwrapped and improved multiple-aperture SAR interferograms and②observe the 3D deformation field related to the 2016 Kumamoto earthquake,even near the fault lines.Two ascending pairs and one descending the Advanced Land Observing Satellite-2(ALOS-2)Phased Array-type L-band Synthetic Aperture Radar-2(PALSAR-2)pair were used for the 3D deformation retrieval.Eleven in situ Global Positioning System(GPS)measurements were used to validate the 3D deformation measurement accuracy.The achieved accuracy was approximately 2.96,3.75,and 2.86 cm in the east,north,and up directions,respectively.The results show the feasibility of precise 3D deformation measured through the integration of the improved methods,even in a case of large and complex deformation.
文摘Located on the mountainous area, Kelok Sembilan flyover area in West Sumatra, Indonesia has a long history of land deformation, therefore monitoring and analyzing as continuously is a necessity to minimize the impact. Notably, in the rainy season, the land deformation occurs along this area. The zone is crucial as the center of transportation connection in the middle of Sumatra. Quasi-Persistent Scatterer (Q-PS) Interferometry technique was applied for extracting information of land deformation on the field from time to time. Not only does the method have high performance for detecting land deformation but also improve the number of PS point, especially in a non-urban area. This research supported by 90 scenes of Sentinel-1A (C-band) taken from October 2014 to November 2017 for ascending and descending orbit with VV and VH polarization in 5 × 20 m (range × azimuth) resolution. Both satellite orbits detected two critical locations of land deformation namely as zone A and Zone B, which located in positive steep slope where there is more than 500 mm movement in the Line of Sight (LOS) during acquisition time. Deformations in the vertical and horizontal direction for both zone, are 778.9 mm, 795.7 mm and 730.5 mm, 751.7 mm, respectively. Finally, the results were confirmed by ground truth data using Unmanned Aerial Vehicle (UAV) observation.
基金The work was supported by the Hong Kong Polytechnic University (Grant Nos. G-V747 and G-T179).
文摘Satellite synthetic aperture radar (SAR) inter-ferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was reclaimed from the sea and therefore certain ground settlement in the area has been expected. A pair of ERS-2 SAR images spanning nearly a year is used in the study. The high spatial resolution (20 m×20 m) ground settlement map derived indicates that the settlement that occurred in the area over the time period is as large as 50 mm. The SAR measurement results agree with the levelling measurements at some benchmarks in the area to well within 1 cm(rms error),and the overall correlation between the two types of results is 0.89. The paper presents some brief background of inter-ferometric SAR, and outlines the data processing methods and results.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金Project(2013CB733303)supported by the National Basic Research Program of ChinaProjects(41222027,11103068,41104003)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ1006)supported by Hunan Provincial Natural Science Foundation,ChinaProject(TXCL-KF2013-002)supported by the Key Laboratory of Videometric and Vision Navigation of Hunan Province,ChinaProject(SKLGED2013-2-1-E)supported by the State Key Laboratory of Geodesy and Earth’s Dynamics,ChinaProject(K201208)supported by the Key Laboratory of Earth Observation Technique of National Administration of Surveying,Mapping and Geoinformation,China
文摘The variance-dependent Goldstein radar interferogram filter takes into account the information of both interferometric coherence and multilook factors,and can produce very consistent results for interferograms generated under a wide variety of multilook factors and with very different noise level.However,the filter is a bit complicated and its application is still very limited.We present the designing and implementation of the variance-dependent Goldstein radar interferogram filtering,emphasizing on the logic flow,the generation of look-up table,the determination of filtering parameter,and the handling of edge information loss.Experiments with real interferograms are provided to demonstrate the applications of the designed filtering.Comparisons with the result of the coherence-dependent Goldstein filter show that improvements from 18.4% to 36.9% are achieved when the variance-dependent filter is used,and the noisier the interferogram,the greater the improvement.
基金supported by the National Natural Science Foundation of China (42074022)。
文摘Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.
基金supported by the National Natural Science Foundation of China(6110117861271441)
文摘This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.