In this paper,a new decomposition method is proposed to solve the problems that vegetation component is overestimated and is not sensitive to directional scattering features with traditional polarimetric Synthetic Ape...In this paper,a new decomposition method is proposed to solve the problems that vegetation component is overestimated and is not sensitive to directional scattering features with traditional polarimetric Synthetic Aperture Radar(SAR)decomposition.It uses a Polarimetric Interferometric Similarity Parameter(PISP)calculated from Polarimetric SAR Interferometry(PolInSAR)datasets to the scattering decomposition.The PISP is proposed to reveal the geometric sensitivity of SAR interferometry.It is defined by three optimized mechanisms obtained from PolInSAR datasets,therefore,it not only relates to the coherent scattering mechanism closely,but also sufficiently uses the phase and amplitude information.The PISP of building is high,and forest’s PISP is low.The proposed method uses the PISP as a judge condition to select different vegetation model adaptively.The decomposition results show the proposed method can effectively solve the vegetation ingredients overestimation problem.In addition,it is sensitive to the directional scattering.展开更多
以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵...以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵向位移的时空特性与实际桥梁结构相符合,验证了PS-InSAR技术观测桥梁结构位移的可行性.建立支座纵向位移与温度的线性相关模型,并与结构健康监测系统的实测结果进行对比.两者吻合良好,相对误差控制在10%以内,验证了PS-InSAR测量桥梁结构位移的可靠性.利用有限元模拟温度作用下桥梁支座的位移变化,并与PS-InSAR位移时间序列进行对比.两者趋势基本一致,LOS向位移误差在[-10,10]mm,验证了PS-InSAR测量桥梁结构位移的准确性.展开更多
文摘In this paper,a new decomposition method is proposed to solve the problems that vegetation component is overestimated and is not sensitive to directional scattering features with traditional polarimetric Synthetic Aperture Radar(SAR)decomposition.It uses a Polarimetric Interferometric Similarity Parameter(PISP)calculated from Polarimetric SAR Interferometry(PolInSAR)datasets to the scattering decomposition.The PISP is proposed to reveal the geometric sensitivity of SAR interferometry.It is defined by three optimized mechanisms obtained from PolInSAR datasets,therefore,it not only relates to the coherent scattering mechanism closely,but also sufficiently uses the phase and amplitude information.The PISP of building is high,and forest’s PISP is low.The proposed method uses the PISP as a judge condition to select different vegetation model adaptively.The decomposition results show the proposed method can effectively solve the vegetation ingredients overestimation problem.In addition,it is sensitive to the directional scattering.
文摘以国内某高速铁路钢拱桥为研究对象,选取2017—2018年期间59幅C波段Senti⁃nel-1号雷达卫星影像,利用PS-InSAR技术处理影像获得桥梁的视线向(Line of Sight,LOS)位移,根据SAR成像空间几何关系解算出支座的纵向位移.研究结果表明:支座纵向位移的时空特性与实际桥梁结构相符合,验证了PS-InSAR技术观测桥梁结构位移的可行性.建立支座纵向位移与温度的线性相关模型,并与结构健康监测系统的实测结果进行对比.两者吻合良好,相对误差控制在10%以内,验证了PS-InSAR测量桥梁结构位移的可靠性.利用有限元模拟温度作用下桥梁支座的位移变化,并与PS-InSAR位移时间序列进行对比.两者趋势基本一致,LOS向位移误差在[-10,10]mm,验证了PS-InSAR测量桥梁结构位移的准确性.