期刊文献+
共找到43,638篇文章
< 1 2 250 >
每页显示 20 50 100
Physics-informed deep learning for fringe pattern analysis
1
作者 Wei Yin Yuxuan Che +6 位作者 Xinsheng Li Mingyu Li Yan Hu Shijie Feng Edmund Y.Lam Qian Chen Chao Zuo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第1期4-15,共12页
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives... Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging. 展开更多
关键词 optical metrology deep learning physics-informed neural networks fringe analysis phase retrieval
在线阅读 下载PDF
Physics-informed deep learning for one-dimensional consolidation 被引量:3
2
作者 Yared W.Bekele 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期420-430,共11页
Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potenti... Neural networks with physical governing equations as constraints have recently created a new trend in machine learning research.In this context,a review of related research is first presented and discussed.The potential offered by such physics-informed deep learning models for computations in geomechanics is demonstrated by application to one-dimensional(1D)consolidation.The governing equation for 1D problems is applied as a constraint in the deep learning model.The deep learning model relies on automatic differentiation for applying the governing equation as a constraint,based on the mathematical approximations established by the neural network.The total loss is measured as a combination of the training loss(based on analytical and model predicted solutions)and the constraint loss(a requirement to satisfy the governing equation).Two classes of problems are considered:forward and inverse problems.The forward problems demonstrate the performance of a physically constrained neural network model in predicting solutions for 1D consolidation problems.Inverse problems show prediction of the coefficient of consolidation.Terzaghi’s problem,with varying boundary conditions,is used as a numerical example and the deep learning model shows a remarkable performance in both the forward and inverse problems.While the application demonstrated here is a simple 1D consolidation problem,such a deep learning model integrated with a physical law has significant implications for use in,such as,faster realtime numerical prediction for digital twins,numerical model reproducibility and constitutive model parameter optimization. 展开更多
关键词 physics-informed deep learning CONSOLIDATION Forward problems Inverse problems
在线阅读 下载PDF
Physics-informed deep learning for incompressible laminar flows 被引量:22
3
作者 Chengping Rao Hao Sun Yang Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期207-212,共6页
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of l... Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy. 展开更多
关键词 physics-informed neural networks(PINN) deep learning Fluid dynamics Incompressible laminar flow
在线阅读 下载PDF
Physics-informed deep learning for digital materials
4
作者 Zhizhou Zhang Grace X Gu 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期52-57,共6页
In this work,a physics-informed neural network(PINN)designed specifically for analyzing digital mate-rials is introduced.This proposed machine learning(ML)model can be trained free of ground truth data by adopting the... In this work,a physics-informed neural network(PINN)designed specifically for analyzing digital mate-rials is introduced.This proposed machine learning(ML)model can be trained free of ground truth data by adopting the minimum energy criteria as its loss function.Results show that our energy-based PINN reaches similar accuracy as supervised ML models.Adding a hinge loss on the Jacobian can constrain the model to avoid erroneous deformation gradient caused by the nonlinear logarithmic strain.Lastly,we discuss how the strain energy of each material element at each numerical integration point can be calculated parallelly on a GPU.The algorithm is tested on different mesh densities to evaluate its com-putational efficiency which scales linearly with respect to the number of nodes in the system.This work provides a foundation for encoding physical behaviors of digital materials directly into neural networks,enabling label-free learning for the design of next-generation composites. 展开更多
关键词 physics-informed neural networks Machine learning Finite element analysis Digital materials Computational mechanics
在线阅读 下载PDF
Comprehensive Review and Analysis on Facial Emotion Recognition:Performance Insights into Deep and Traditional Learning with Current Updates and Challenges
5
作者 Amjad Rehman Muhammad Mujahid +2 位作者 Alex Elyassih Bayan AlGhofaily Saeed Ali Omer Bahaj 《Computers, Materials & Continua》 SCIE EI 2025年第1期41-72,共32页
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi... In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research. 展开更多
关键词 Face emotion recognition deep learning hybrid learning CK+ facial images machine learning technological development
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data
6
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
Advancements in Liver Tumor Detection:A Comprehensive Review of Various Deep Learning Models
7
作者 Shanmugasundaram Hariharan D.Anandan +3 位作者 Murugaperumal Krishnamoorthy Vinay Kukreja Nitin Goyal Shih-Yu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期91-122,共32页
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi... Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges. 展开更多
关键词 Liver tumor detection liver tumor segmentation image processing liver tumor diagnosis feature extraction tumor classification deep learning machine learning
在线阅读 下载PDF
Hybrid Deep Learning Approach for Automating App Review Classification:Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework
8
作者 Nahed Alsaleh Reem Alnanih Nahed Alowidi 《Computers, Materials & Continua》 SCIE EI 2025年第1期949-976,共28页
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While t... App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior performance.This research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and satisfaction.We propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification accuracy.Comparative analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,respectively.Thesignificant contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews dataset.These advancements provide valuable insights for software developers to enhance usability and drive user-centric application development. 展开更多
关键词 Requirements Engineering(RE) app review analysis usabilitymetrics hybrid deep learning BERT-BiLSTM-CNN
在线阅读 下载PDF
Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
9
作者 Shijie Tang Yong Ding Huiyong Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1129-1150,共22页
As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and... As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and fast and accurate attack detection techniques are crucial.The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series.To address this issue,we propose an anomaly detection method based on distributed deep learning.Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the time series,which can maintain the edge of discrete features.We use a distributed linear deep learning model to establish a sequential prediction model and adjust the threshold for anomaly detection based on the prediction error of the validation set.Our method can not only detect abnormal attacks but also locate the sensors that cause anomalies.We conducted experiments on the Secure Water Treatment(SWAT)and Water Distribution(WADI)public datasets.The experimental results show that our method is superior to the baseline method in identifying the types of attacks and detecting efficiency. 展开更多
关键词 Anomaly detection CPS deep learning MLP(multi-layer perceptron)
在线阅读 下载PDF
An Enhanced Lung Cancer Detection Approach Using Dual-Model Deep Learning Technique
10
作者 Sumaia Mohamed Elhassan Saad Mohamed Darwish Saleh Mesbah Elkaffas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期835-867,共33页
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc... Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance. 展开更多
关键词 Lung cancer detection dual-model deep learning technique data augmentation CNN YOLOv8
在线阅读 下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
11
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS
12
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
AI-Powered Threat Detection in Online Communities: A Multi-Modal Deep Learning Approach
13
作者 Ravi Teja Potla 《Journal of Computer and Communications》 2025年第2期155-171,共17页
The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Tr... The fast increase of online communities has brought about an increase in cyber threats inclusive of cyberbullying, hate speech, misinformation, and online harassment, making content moderation a pressing necessity. Traditional single-modal AI-based detection systems, which analyze both text, photos, or movies in isolation, have established useless at taking pictures multi-modal threats, in which malicious actors spread dangerous content throughout a couple of formats. To cope with these demanding situations, we advise a multi-modal deep mastering framework that integrates Natural Language Processing (NLP), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks to become aware of and mitigate online threats effectively. Our proposed model combines BERT for text class, ResNet50 for photograph processing, and a hybrid LSTM-3-d CNN community for video content material analysis. We constructed a large-scale dataset comprising 500,000 textual posts, 200,000 offensive images, and 50,000 annotated motion pictures from more than one platform, which includes Twitter, Reddit, YouTube, and online gaming forums. The system became carefully evaluated using trendy gadget mastering metrics which include accuracy, precision, remember, F1-score, and ROC-AUC curves. Experimental outcomes demonstrate that our multi-modal method extensively outperforms single-modal AI classifiers, achieving an accuracy of 92.3%, precision of 91.2%, do not forget of 90.1%, and an AUC rating of 0.95. The findings validate the necessity of integrating multi-modal AI for actual-time, high-accuracy online chance detection and moderation. Future paintings will have consciousness on improving hostile robustness, enhancing scalability for real-world deployment, and addressing ethical worries associated with AI-driven content moderation. 展开更多
关键词 Multi-Model AI deep learning Natural Language Processing (NLP) Explainable AI (XI) Federated learning Cyber Threat Detection LSTM CNNS
在线阅读 下载PDF
Ensemble Deep Learning Approaches in Health Care:A Review
14
作者 Aziz Alotaibi 《Computers, Materials & Continua》 2025年第3期3741-3771,共31页
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem... Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed. 展开更多
关键词 deep learning ensemble learning deep ensemble learning deep learning approaches for health care health care
在线阅读 下载PDF
Numerical Study of Dynamical System Using Deep Learning Approach
15
作者 Manana Chumburidze Miranda Mnatsakaniani +1 位作者 David Lekveishvili Nana Julakidze 《Open Journal of Applied Sciences》 2025年第2期425-432,共8页
This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computation... This article is devoted to developing a deep learning method for the numerical solution of the partial differential equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computationally numerical format has been used. In particular, for investigation mathematical models of the dynamical system of cancer cell invasion in inhomogeneous areas of human tissues have been considered. Neural operators were initially proposed to model the differential operator of PDEs. The GKNN mapping features between input data to the PDEs and their solutions have been constructed. The boundary integral method in combination with Green’s functions for a large number of boundary conditions is used. The tools applied in this development are based on the Fourier neural operators (FNOs), graph theory, theory elasticity, and singular integral equations. 展开更多
关键词 deep learning Graph Kernel Network Green’s Tensor
在线阅读 下载PDF
Deep Learning-Based Modeling Methods in Personalized Education
16
作者 Qiang SUN 《Artificial Intelligence Education Studies》 2025年第1期15-30,共16页
Deep learning has significantly transformed personalized education by enabling intelligent adaptation to indi-vidual learning needs.This study explores deep learning-based modeling methods that enhance personalized le... Deep learning has significantly transformed personalized education by enabling intelligent adaptation to indi-vidual learning needs.This study explores deep learning-based modeling methods that enhance personalized learning experiences,optimize instructional content,and predict student progress.We examine key techniques,including recurrent neural networks(RNNs),transformers,reinforcement learning,and multimodal learning analytics,to demonstrate their roles in personalized learning path recommendations and adaptive content gen-eration.Case studies of AI-driven tutoring systems and learning management platforms illustrate real-world applications.Additionally,we address challenges related to data privacy,algorithmic bias,and model inter-pretability.The paper concludes with future directions for deep learning in education,emphasizing its potential for enhancing immersive and intelligent learning environments. 展开更多
关键词 deep learning Personalized learning Adaptive Education learning Analytics Artificial Intelligence
在线阅读 下载PDF
Enhancing mineral processing with deep learning: Automated quartz identification using thin section images
17
作者 Gökhan Külekçi Kemal Hacıefendioğlu Hasan Basri Başağa 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期802-816,共15页
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor... The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis. 展开更多
关键词 quartz mineral identification deep learning hyperspectral imaging deep learning in geology
在线阅读 下载PDF
A Novel Approach to Enhanced Cancelable Multi-Biometrics Personal Identification Based on Incremental Deep Learning
18
作者 Ali Batouche Souham Meshoul +1 位作者 Hadil Shaiba Mohamed Batouche 《Computers, Materials & Continua》 2025年第5期1727-1752,共26页
The field of biometric identification has seen significant advancements over the years,with research focusing on enhancing the accuracy and security of these systems.One of the key developments is the integration of d... The field of biometric identification has seen significant advancements over the years,with research focusing on enhancing the accuracy and security of these systems.One of the key developments is the integration of deep learning techniques in biometric systems.However,despite these advancements,certain challenges persist.One of the most significant challenges is scalability over growing complexity.Traditional methods either require maintaining and securing a growing database,introducing serious security challenges,or relying on retraining the entiremodelwhen new data is introduced-a process that can be computationally expensive and complex.This challenge underscores the need for more efficient methods to scale securely.To this end,we introduce a novel approach that addresses these challenges by integrating multimodal biometrics,cancelable biometrics,and incremental learning techniques.This work is among the first attempts to seamlessly incorporate deep cancelable biometrics with dynamic architectural updates,applied incrementally to the deep learning model as new users are enrolled,achieving high performance with minimal catastrophic forgetting.By leveraging a One-Dimensional Convolutional Neural Network(1D-CNN)architecture combined with a hybrid incremental learning approach,our system achieves high recognition accuracy,averaging 98.98% over incrementing datasets,while ensuring user privacy through cancelable templates generated via a pre-trained CNN model and random projection.The approach demonstrates remarkable adaptability,utilizing the least intrusive biometric traits like facial features and fingerprints,ensuring not only robust performance but also long-term serviceability. 展开更多
关键词 Incremental learning personal identification cancelablemulti-biometrics pattern recognition security deep learning cyber-attacks transfer learning random projection catastrophic forgetting
在线阅读 下载PDF
Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review
19
作者 Syed Ijaz Ur Rahman Naveed Abbas +5 位作者 Sikandar Ali Muhammad Salman Ahmed Alkhayat Jawad Khan Dildar Hussain Yeong Hyeon Gu 《Computer Modeling in Engineering & Sciences》 2025年第2期1199-1231,共33页
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ... Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases. 展开更多
关键词 Acute lymphoblastic bone marrow SEGMENTATION CLASSIFICATION machine learning deep learning convolutional neural network
在线阅读 下载PDF
A deep transfer learning model for the deformation of braced excavations with limited monitoring data
20
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections Transfer learning deep learning Finite element simulation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部