期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks
1
作者 Nanxi DING Hengzhen FENG +5 位作者 H.Z.LOU Shenghua FU Chenglong LI Zihao ZHANG Wenlong MA Zhengqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期341-356,共16页
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio... This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics. 展开更多
关键词 physics-informed neural network(pinn) spectral method two-phase flow parameter prediction
在线阅读 下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:2
2
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 physics-informed neural networks(pinns) MULTI-SCALE Fluid dynamics Boundary layer
在线阅读 下载PDF
Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition:application of the clique polynomial method and physics-informed neural networks
3
作者 K.CHANDAN K.KARTHIK +3 位作者 K.V.NAGARAJA B.C.PRASANNAKUMARA R.S.VARUN KUMAR T.MUHAMMAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1613-1632,共20页
The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa... The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem. 展开更多
关键词 heat transfer FIN porous fin local thermal non-equilibrium(LTNE)model physics-informed neural network(pinn)
在线阅读 下载PDF
A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
4
作者 Jing’ang ZHU Yiheng XUE Zishun LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1685-1704,共20页
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor... Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods. 展开更多
关键词 soft material parameter identification physics-informed neural network(pinn) transfer learning inverse problem
在线阅读 下载PDF
A physics-informed neural network for simulation of finite deformation in hyperelastic-magnetic coupling problems
5
作者 WANG Lei LUO Zikun +1 位作者 LU Mengkai TANG Minghai 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1717-1732,共16页
Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyp... Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed.Since the solution space consists of two-phase domains,two separate networks are constructed to independently predict the solution for each phase region.In addition,a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients.With the developed framework,the magnetic fields and deformation fields of magnetorheological elastomers(MREs)are solved under the control of hyperelastic-magnetic coupling equations.Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework.Moreover,the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated,particularly in handling small data sets,as well as its ability in swiftly and precisely forecasting magnetostrictive motion. 展开更多
关键词 physics-informed neural network(pinn) deep learning hyperelastic-magnetic coupling finite deformation small data set
在线阅读 下载PDF
Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems
6
作者 Long WANG Lei ZHANG Guowei HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1467-1480,共14页
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp... A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions. 展开更多
关键词 physics-informed neural network(pinn) singular perturbation boundarylayer problem composite asymptotic expansion
在线阅读 下载PDF
Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions 被引量:4
7
作者 Zhiping MAO Xuhui MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1069-1084,共16页
We consider solving the forward and inverse partial differential equations(PDEs)which have sharp solutions with physics-informed neural networks(PINNs)in this work.In particular,to better capture the sharpness of the ... We consider solving the forward and inverse partial differential equations(PDEs)which have sharp solutions with physics-informed neural networks(PINNs)in this work.In particular,to better capture the sharpness of the solution,we propose the adaptive sampling methods(ASMs)based on the residual and the gradient of the solution.We first present a residual only-based ASM denoted by ASMⅠ.In this approach,we first train the neural network using a small number of residual points and divide the computational domain into a certain number of sub-domains,then we add new residual points in the sub-domain which has the largest mean absolute value of the residual,and those points which have the largest absolute values of the residual in this sub-domain as new residual points.We further develop a second type of ASM(denoted by ASMⅡ)based on both the residual and the gradient of the solution due to the fact that only the residual may not be able to efficiently capture the sharpness of the solution.The procedure of ASMⅡis almost the same as that of ASMⅠ,and we add new residual points which have not only large residuals but also large gradients.To demonstrate the effectiveness of the present methods,we use both ASMⅠand ASMⅡto solve a number of PDEs,including the Burger equation,the compressible Euler equation,the Poisson equation over an Lshape domain as well as the high-dimensional Poisson equation.It has been shown from the numerical results that the sharp solutions can be well approximated by using either ASMⅠor ASMⅡ,and both methods deliver much more accurate solutions than the original PINNs with the same number of residual points.Moreover,the ASMⅡalgorithm has better performance in terms of accuracy,efficiency,and stability compared with the ASMⅠalgorithm.This means that the gradient of the solution improves the stability and efficiency of the adaptive sampling procedure as well as the accuracy of the solution.Furthermore,we also employ the similar adaptive sampling technique for the data points of boundary conditions(BCs)if the sharpness of the solution is near the boundary.The result of the L-shape Poisson problem indicates that the present method can significantly improve the efficiency,stability,and accuracy. 展开更多
关键词 physics-informed neural network(pinn) adaptive sampling high-dimension L-shape Poisson equation accuracy
在线阅读 下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:5
8
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 Lithium-ion batteries physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
在线阅读 下载PDF
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics 被引量:2
9
作者 W.WU M.DANEKER +2 位作者 M.A.JOLLEY K.T.TURNER L.LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1039-1068,共30页
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch... Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials. 展开更多
关键词 solid mechanics material identification physics-informed neural network(pinn) data sampling boundary condition(BC)constraint
在线阅读 下载PDF
Physics-Informed Deep Neural Network for Bearing Prognosis with Multisensory Signals 被引量:2
10
作者 Xuefeng Chen Meng Ma +2 位作者 Zhibin Zhao Zhi Zhai Zhu Mao 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第4期200-207,共8页
Prognosis of bearing is critical to improve the safety,reliability,and availability of machinery systems,which provides the health condition assessment and determines how long the machine would work before failure occ... Prognosis of bearing is critical to improve the safety,reliability,and availability of machinery systems,which provides the health condition assessment and determines how long the machine would work before failure occurs by predicting the remaining useful life(RUL).In order to overcome the drawback of pure data-driven methods and predict RUL accurately,a novel physics-informed deep neural network,named degradation consistency recurrent neural network,is proposed for RUL prediction by integrating the natural degradation knowledge of mechanical components.The degradation is monotonic over the whole life of bearings,which is characterized by temperature signals.To incorporate the knowledge of monotonic degradation,a positive increment recurrence relationship is introduced to keep the monotonicity.Thus,the proposed model is relatively well understood and capable to keep the learning process consistent with physical degradation.The effectiveness and merit of the RUL prediction using the proposed method are demonstrated through vibration signals collected from a set of run-to-failure tests. 展开更多
关键词 deep learning physics-informed neural network(pinn) Prognostics and Health Management(PHM) remaining useful life
在线阅读 下载PDF
An artificial viscosity augmented physics-informed neural network for incompressible flow
11
作者 Yichuan HE Zhicheng WANG +2 位作者 Hui XIANG Xiaomo JIANG Dawei TANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1101-1110,共10页
Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or inte... Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem. 展开更多
关键词 physics-informed neural network(pinn) artificial viscosity(AV) cavity driven flow high Reynolds number
在线阅读 下载PDF
Physics-informed deep learning for incompressible laminar flows 被引量:22
12
作者 Chengping Rao Hao Sun Yang Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期207-212,共6页
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of l... Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems,whose basic concept is to embed physical laws to constrain/inform neural networks,with the need of less data for training a reliable model.This can be achieved by incorporating the residual of physics equations into the loss function.Through minimizing the loss function,the network could approximate the solution.In this paper,we propose a mixed-variable scheme of physics-informed neural network(PINN)for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers.A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions.Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy. 展开更多
关键词 physics-informed neural networks(pinn) Deep learning Fluid dynamics Incompressible laminar flow
在线阅读 下载PDF
Development and Implementation of Physics-Informed Neural ODE for Dynamics Modeling of a Fixed-Wing Aircraft Under Icing/Fault
13
作者 Jinyi Ma Yiyang Li +3 位作者 Jingqi Tu Yiming Zhang Jianliang Ai Yiqun Dong 《Guidance, Navigation and Control》 2024年第1期102-120,共19页
Accurate dynamics modeling is crucial for the safety and control offixed-wing aircraft under perturbation(e.g.icing/fault).In this work,we propose a physics-informed Neural Ordinary Differential Equation(PI-NODE)-base... Accurate dynamics modeling is crucial for the safety and control offixed-wing aircraft under perturbation(e.g.icing/fault).In this work,we propose a physics-informed Neural Ordinary Differential Equation(PI-NODE)-based scheme for aircraft dynamics modeling under icing/fault.First,icing accumulation and control surface faults are considered and injected into the nominal(clean)aircraft dynamics model.Second,the physics knowledge of aircraft dynamics modeling is divided into kinematics and kinetics.The former is universally applicable and borrows directly from the nominal aircraft.The latter kinetics knowledge,which hinges on external forces and moments,is inaccurate and challenging under icing/fault.To address this issue,we employ Neural ODE to compensate for the residual between the aircraft dynamics under icing/fault and the nominal(clean)condition,resulting in a naturally continuous-time modeling approach.In experiments,we benchmark the proposed PI-NODE against three baseline methods in a dedicated flight scenario.Comparative studies validate the higher accuracy and improve the generalization ability of the proposed PI-NODE for aircraft dynamics modeling under icing/fault. 展开更多
关键词 Dynamics modeling physics-informed learning neural networks fixed-wing aircraft icing and fault
原文传递
求解单层织物热湿耦合模型正反问题的物理信息神经网络方法
14
作者 蔡启凡 徐映红 《软件工程》 2025年第1期73-78,共6页
针对织物热湿耦合模型难以解耦和反问题求解时间长的问题,提出了一种求解单层稳态织物热湿耦合传递模型正反问题的物理信息神经网络(Physics-Informed Neural Networks,PINNs)方法。首先,给出了求解单层织物热湿传递方程正问题的PINNs方... 针对织物热湿耦合模型难以解耦和反问题求解时间长的问题,提出了一种求解单层稳态织物热湿耦合传递模型正反问题的物理信息神经网络(Physics-Informed Neural Networks,PINNs)方法。首先,给出了求解单层织物热湿传递方程正问题的PINNs方法,并采用数值实验验证了方法的有效性。其次,提出了基于热湿舒适性的厚度参数决定反问题,并使用PINNs方法进行求解。数值实验结果显示,PINNs方法在求解参数决定反问题时,仅需5 min即可预测出概率函数,相比于微分方程数值求解和粒子群结合方法,求解效率提高了25倍,展现出显著的优越性和应用潜力。 展开更多
关键词 单层织物 热湿模型 耦合方程 神经网络 pinns
在线阅读 下载PDF
基于物理信息神经网络的长距离顶管施工顶力预测
15
作者 李博 刘宇翔 +2 位作者 陈建国 杨耀红 张哲 《人民长江》 北大核心 2025年第1期147-155,共9页
长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网... 长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网络的训练机制,并引入改进的麻雀搜索算法(ISSA)对模型超参数取值进行优化,建立了ISSA-PINN顶管施工顶力预测模型;以河南省郑开同城东部供水工程顶管施工为例,选取524组工程实测数据验证了模型的有效性。计算结果表明:ISSA-PINN模型具有较高的预测精度,相较于单纯数据驱动模型,在测试集和新数据集中的预测性能分别提升了0.07和0.17,说明物理模型的融入对降低机器模型的过拟合风险和提高泛化能力有积极影响;相比于SSA和粒子群算法,ISSA算法寻优速度更快、适应度更好。研究结果可为顶管工程施工顶力控制提供参考。 展开更多
关键词 顶管施工 顶力预测 物理信息神经网络(pinn) 改进麻雀搜索算法(ISSA)
在线阅读 下载PDF
深度神经网络优化Heston定价模型
16
作者 闫海波 张馨月 《福建电脑》 2025年第4期9-14,共6页
为提升Heston定价模型在金融衍生品定价中的准确性,本文构建一个预测期权收盘价的PINN_Heston模型。采用结合PINN与Heston方程,构造物理方程约束训练的神经网络。模型以标的资产价格、到期时间及随机波动率为输入,期权价格为输出。实验... 为提升Heston定价模型在金融衍生品定价中的准确性,本文构建一个预测期权收盘价的PINN_Heston模型。采用结合PINN与Heston方程,构造物理方程约束训练的神经网络。模型以标的资产价格、到期时间及随机波动率为输入,期权价格为输出。实验的结果显示,PINN_Heston方法在定价上优于传统Heston模型和Black-Scholes模型,说明深度学习方法在期权定价领域具有优势,可为金融模型的改进和创新提供一个新思路。 展开更多
关键词 神经网络 Heston模型 BLACK-SCHOLES模型 期权定价
在线阅读 下载PDF
Physics-informed neural networks for estimating stress transfer mechanics in single lap joints 被引量:1
17
作者 Shivam SHARMA Rajneesh AWASTHI +1 位作者 Yedlabala Sudhir SASTRY Pattabhi Ramaiah BUDARAPU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第8期621-631,共11页
With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning ... With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning involves solving differential equations.Here,physics-informed neural networks(PINNs)are developed to solve the differential equations associated with a specific scientific problem.As such,algorithms for solving the differential equations by embedding their initial and boundary conditions in the cost function of the artificial neural networks using algorithmic differentiation must also be developed.In this study,various PINNs are adopted to estimate the stresses in the tablets and the interphase of a single lap joint.The proposed model is represented by two fourth-order non-homogeneous coupled partial differential equations,with the axial stresses in the upper and lower tablets adopted as the dependent variables.The axial stresses are a function of the tablet length,which presents the independent variable.Therefore,the axial stresses in the tablets are estimated by solving the coupled partial differential equations when subjected to the boundary conditions,whereas the remaining stress components are expressed in terms of axial stresses.The results obtained using the developed methodology are validated using the results obtained via MAPLE software. 展开更多
关键词 physics-informed neural networks(pinns) Algorithmic differentiation Artificial neural networks Loss function Single lap joint
原文传递
基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测 被引量:11
18
作者 潘秋景 吴洪涛 +1 位作者 张子龙 宋克志 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期539-551,共13页
复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘... 复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘进诱发地层变形的物理信息神经网络(physics-informed neural network,简称PINN)模型。针对隧道上覆多个地层的地质特征,提出了多域物理信息神经网络(multi-physics-informed neural network,简称MPINN)模型,实现了在统一的框架内对不同地层的物理信息分区域表达。结果表明:MPINN模型高度还原了有限差分法的计算结果,可以准确预测复合地层中隧道开挖诱发的地表沉降;由于融入了物理机制,MPINN模型对隧道施工诱发地表沉降的问题具有普适性,可应用于不同地质和几何条件下隧道诱发地表沉降的预测;基于工程实测数据,提出的MPINN模型准确预测了监测断面的地表沉降曲线,可为复合地层下盾构掘进过程中地表沉降的预测预警提供参考。 展开更多
关键词 物理信息神经网络(pinn) 盾构隧道 地表沉降 机器学习 数据物理驱动
在线阅读 下载PDF
Variational inference in neural functional prior using normalizing flows: application to differential equation and operator learning problems
19
作者 Xuhui MENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1111-1124,共14页
Physics-informed deep learning has recently emerged as an effective tool for leveraging both observational data and available physical laws.Physics-informed neural networks(PINNs)and deep operator networks(DeepONets)a... Physics-informed deep learning has recently emerged as an effective tool for leveraging both observational data and available physical laws.Physics-informed neural networks(PINNs)and deep operator networks(DeepONets)are two such models.The former encodes the physical laws via the automatic differentiation,while the latter learns the hidden physics from data.Generally,the noisy and limited observational data as well as the over-parameterization in neural networks(NNs)result in uncertainty in predictions from deep learning models.In paper“MENG,X.,YANG,L.,MAO,Z.,FERRANDIS,J.D.,and KARNIADAKIS,G.E.Learning functional priors and posteriors from data and physics.Journal of Computational Physics,457,111073(2022)”,a Bayesian framework based on the generative adversarial networks(GANs)has been proposed as a unified model to quantify uncertainties in predictions of PINNs as well as DeepONets.Specifically,the proposed approach in“MENG,X.,YANG,L.,MAO,Z.,FERRANDIS,J.D.,and KARNIADAKIS,G.E.Learning functional priors and posteriors from data and physics.Journal of Computational Physics,457,111073(2022)”has two stages:(i)prior learning,and(ii)posterior estimation.At the first stage,the GANs are utilized to learn a functional prior either from a prescribed function distribution,e.g.,the Gaussian process,or from historical data and available physics.At the second stage,the Hamiltonian Monte Carlo(HMC)method is utilized to estimate the posterior in the latent space of GANs.However,the vanilla HMC does not support the mini-batch training,which limits its applications in problems with big data.In the present work,we propose to use the normalizing flow(NF)models in the context of variational inference(VI),which naturally enables the mini-batch training,as the alternative to HMC for posterior estimation in the latent space of GANs.A series of numerical experiments,including a nonlinear differential equation problem and a 100-dimensional(100D)Darcy problem,are conducted to demonstrate that the NFs with full-/mini-batch training are able to achieve similar accuracy as the“gold rule”HMC.Moreover,the mini-batch training of NF makes it a promising tool for quantifying uncertainty in solving the high-dimensional partial differential equation(PDE)problems with big data. 展开更多
关键词 uncertainty quantification(UQ) physics-informed neural network(pinn)
在线阅读 下载PDF
基于PINNs的高度非线性Richards入渗模型研究
20
作者 霍海峰 黄昊宇 +2 位作者 李其昂 胡彪 张兆文 《中国民航大学学报》 CAS 2023年第5期6-12,共7页
针对具有高度非线性系数的非饱和土Richards入渗模型,利用物理信息神经网络(PINNs,physics-informed neural networks)进行求解,并通过有限差分方法对网络预测结果进行验证,发现PINNs预测结果与有限差分预测结果基本吻合;再研究超参数对... 针对具有高度非线性系数的非饱和土Richards入渗模型,利用物理信息神经网络(PINNs,physics-informed neural networks)进行求解,并通过有限差分方法对网络预测结果进行验证,发现PINNs预测结果与有限差分预测结果基本吻合;再研究超参数对PINNs误差的影响,确定训练集大小、网络层数等因素对PINNs训练集及测试集误差的影响,在合理的超参数调整下,PINNs预测模型在高度非线性入渗模型中表现出良好的训练效果。该计算方法可广泛应用于热传导、水汽迁移及应力平衡等机场工程问题求解。 展开更多
关键词 高度非线性系数 入渗模型 物理信息神经网络 有限差分方法 超参数调整
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部