In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,.....In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
This paper considers the positive solution to a class of second-order four-point boundary value problem, in which the first order derivative is involved in the nonlinear term explicitly. By the fixed point theorem in ...This paper considers the positive solution to a class of second-order four-point boundary value problem, in which the first order derivative is involved in the nonlinear term explicitly. By the fixed point theorem in cone, sufficient conditions ensuring the existence of positive solution to the problem are obtained. An example is given to illustrate the feasibility of the main results.展开更多
This paper is a sequel to a previous paper (Yang, Y. and Zhang, J. H. Existence of solutions for some fourth-order boundary value problems with parameters. Nonlinear Anal. 69(2), 1364-1375 (2008)) in which the n...This paper is a sequel to a previous paper (Yang, Y. and Zhang, J. H. Existence of solutions for some fourth-order boundary value problems with parameters. Nonlinear Anal. 69(2), 1364-1375 (2008)) in which the nontrivial solutions to the fourthorder boundary value problems were studied. In the current work with the same conditions near infinity but different near zero, the positive, negative, and sign-changing solutions are obtained by the critical point theory, retracting property, and invariant sets.展开更多
This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condit...This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condition:a1φ(x(0))-a2φ(x'(0))=0,a3φ(x(1))+a4φ(x'(1))=0,where φ is an odd increasing homogeneous homeomorphism. By using a new fixed point theorem, sufficient conditions are obtained that guarantee the existence of at least three positive solu- tions. The emphasis here is that the nonlinear term f is involved with the first order derivative explicitly.展开更多
In this paper. we discuss the existence and stability of solution for two semi-homogeneous boundary value problems. The relative theorems in [1.2] are extended. Meanwhile. we obtain some new results.
The alternating direction implicit(ADI)method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles.When the ADI technique is coupled with orthogona...The alternating direction implicit(ADI)method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles.When the ADI technique is coupled with orthogonal spline collocation(OSC)for discretization in space we not only obtain the global solution efficiently but the discretization error with respect to space variables can be of an arbitrarily high order.In[2],we used a Crank Nicolson ADI OSC method for solving general nonlinear parabolic problems with Robin’s boundary conditions on rectangular polygons and demonstrated numerically the accuracy in various norms.A natural question that arises is:Does this method have an extension to non-rectangular regions?In this paper,we present a simple idea of how the ADI OSC technique can be extended to some such regions.Our approach depends on the transfer of Dirichlet boundary conditions in the solution of a two-point boundary value problem(TPBVP).We illustrate our idea for the solution of the heat equation on the unit disc using piecewise Hermite cubics.展开更多
文摘In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金sponsored by the Natural Science Foundation of Anhui Educational Department (Kj2007b055)Youth Project Foundation of Anhui Educational Department (2007jqL1012007jqL102)
文摘This paper considers the positive solution to a class of second-order four-point boundary value problem, in which the first order derivative is involved in the nonlinear term explicitly. By the fixed point theorem in cone, sufficient conditions ensuring the existence of positive solution to the problem are obtained. An example is given to illustrate the feasibility of the main results.
基金Project supported by the National Natural Science Foundation of China (No. 10871096)the Foun-dation of Major Project of Science and Technology of Chinese Education Ministry (No. 205056)+2 种基金the Project of Graduate Education Innovation of Jiangsu Province (No. CX09B_284Z)the Foundation for Outstanding Doctoral Dissertation of Nanjing Normal Universitythe Foundation for Young Teachers of Jiangnan University (No. 2008LQN008)
文摘This paper is a sequel to a previous paper (Yang, Y. and Zhang, J. H. Existence of solutions for some fourth-order boundary value problems with parameters. Nonlinear Anal. 69(2), 1364-1375 (2008)) in which the nontrivial solutions to the fourthorder boundary value problems were studied. In the current work with the same conditions near infinity but different near zero, the positive, negative, and sign-changing solutions are obtained by the critical point theory, retracting property, and invariant sets.
基金Supported by the NNSF of China(10371006) Tianyuan Youth Grant of China(10626033).
文摘This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condition:a1φ(x(0))-a2φ(x'(0))=0,a3φ(x(1))+a4φ(x'(1))=0,where φ is an odd increasing homogeneous homeomorphism. By using a new fixed point theorem, sufficient conditions are obtained that guarantee the existence of at least three positive solu- tions. The emphasis here is that the nonlinear term f is involved with the first order derivative explicitly.
文摘In this paper. we discuss the existence and stability of solution for two semi-homogeneous boundary value problems. The relative theorems in [1.2] are extended. Meanwhile. we obtain some new results.
基金This work was supported by grant no.13328 from the Petroleum Institute,Abu Dhabi,UAE.
文摘The alternating direction implicit(ADI)method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles.When the ADI technique is coupled with orthogonal spline collocation(OSC)for discretization in space we not only obtain the global solution efficiently but the discretization error with respect to space variables can be of an arbitrarily high order.In[2],we used a Crank Nicolson ADI OSC method for solving general nonlinear parabolic problems with Robin’s boundary conditions on rectangular polygons and demonstrated numerically the accuracy in various norms.A natural question that arises is:Does this method have an extension to non-rectangular regions?In this paper,we present a simple idea of how the ADI OSC technique can be extended to some such regions.Our approach depends on the transfer of Dirichlet boundary conditions in the solution of a two-point boundary value problem(TPBVP).We illustrate our idea for the solution of the heat equation on the unit disc using piecewise Hermite cubics.