The variable structure control (VSC) theory is applied to the electro-hydraulic servo system here. The VSC control law is achieved using Lyapunov method and pole placement. To eliminate the chattering phenomena, a s...The variable structure control (VSC) theory is applied to the electro-hydraulic servo system here. The VSC control law is achieved using Lyapunov method and pole placement. To eliminate the chattering phenomena, a saturation function is adopted. The proposed VSC approach is fairly robust to load disturbance and system parameter variation. Since the distortion. including phase lag and amplitude attenuation occurs in the system sinusoid response, the amplitude and phase control (APC) algorithm, based on Adaline neural network and using LMS algorithm, is developed for distortion cancellation. The APC controller is simple and can on-line adjust, thus it gives accurate tracking.展开更多
文摘传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving averaging vector,ARMAV)辨识在电网正常运行过程中针对由负荷等随机扰动引起的类噪声信号进行;在综合考虑辨识误差、阻尼要求和稳定裕度基础上,提出阻尼控制零极点配置基本原则,并设计相应的遗传算法优化方法。为了充分检验上述辨识与控制系统的效果,基于广域测量平台对其进行软硬件实现,并在东北电网简化系统中进行实时数字仿真(real time digital simulation,RTDS)测试,实验结果说明了所提方法的可行性和有效性。
文摘The variable structure control (VSC) theory is applied to the electro-hydraulic servo system here. The VSC control law is achieved using Lyapunov method and pole placement. To eliminate the chattering phenomena, a saturation function is adopted. The proposed VSC approach is fairly robust to load disturbance and system parameter variation. Since the distortion. including phase lag and amplitude attenuation occurs in the system sinusoid response, the amplitude and phase control (APC) algorithm, based on Adaline neural network and using LMS algorithm, is developed for distortion cancellation. The APC controller is simple and can on-line adjust, thus it gives accurate tracking.