A series of novel poly(aryl ether nitrile)s containing phthalazinone moiety were synthesized by the nucleophilic displacement reaction of bisphenol-like monomers (I) with 2,6-difluorobenzonitrile. The inherent vis...A series of novel poly(aryl ether nitrile)s containing phthalazinone moiety were synthesized by the nucleophilic displacement reaction of bisphenol-like monomers (I) with 2,6-difluorobenzonitrile. The inherent viscosities ranged from 0.46 to 1.07 dL g^-1. The glass transition temperatures were in the range of 277-295℃, and the temperatures for 10% weight loss in nitrogen atmosphere were found between 495 and 527 ℃. The structures of these resultant polymers were confirmed by FT-IR and 1^H NMR. Moreover, the properties of poly(aryl ether nitrile)s including solubility and crystallinity were also studied.展开更多
A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place ...A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by ^1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.展开更多
A series of Poly(arly ether sulfone ether ketone)s containing pendant methyl groups were synthesized by the reaction of 4,4'-[sulfonylbis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC) with 4,4'- diphenoxy d...A series of Poly(arly ether sulfone ether ketone)s containing pendant methyl groups were synthesized by the reaction of 4,4'-[sulfonylbis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC) with 4,4'- diphenoxy diphenylsulfone (DPODPS), 4,4'- di(2-methylphenoxy) diphenylsulfone (o-Me-DPODPS), 4,4'- di(3-methylphenoxy) diphenylsulfone (m-Me-DPODPS), 4,4'- di (2,6-bimethylphenoxy) biphenylsulfone(o-Me2-DPODPS) respectively, in a mixture of 1,2-dichloroethane (DCE) and N-methylpyrrolidone (NMP). These reactions were catalyzed by anhydrous aluminum chloride (AlCl). The characteristic of copolymers were studied by means of advanced analytical techniques such as FT-IR,1H-NMR, DSC, TGA and WAXD. The results show glass transition temperature (Tg) in the range of 193-206℃, thermally stable in excess of 434℃ and excellent solubility in polar solvents. Methyl-substituted Poly(aryl ether sulfone ketone)s had higher glass transition temperatures, lower initial decomposition temperatures than the unsubstituted ones.展开更多
Dielectric energy storage materials that are extensively employed in capacitors and other electronic devices have attracted increasing attentions amid the rapid progress of electronic technology.However,the commercial...Dielectric energy storage materials that are extensively employed in capacitors and other electronic devices have attracted increasing attentions amid the rapid progress of electronic technology.However,the commercialized polymeric and ceramic dielectric materials characterized by low energy storage density face numerous limitations in practical applications.In this study,we report the simultaneous enhancement of dielectric properties of poly(arylene ether nitrile)(PEN)through the incorporating of sulfonated PEN(SPEN)modified barium titanate nanorods(BTNR)(SPEN@BTNR)and hot-stretching.BTNR is synthesized using a two-step hydrothermal method,aminated with KH550,and then reacted with SPEN to form the cladding-modified SPEN@BTNR.Due to the intrinsic high permittivity of barium titanate(BT)and enhanced compatibility between SPEN@BTNR and PEN stemming from the cladding of SPEN,the dielectric constant and breakdown strength of SPEN@BTNR/PEN composite are as high as 14.0 at 103 Hz and 198.1 kV/mm at the doping amount of 15 wt.%,respectively.As a result,the energy storage density of SPEN@BTNR/PEN is increased to 2.43 J/cm^(3),compared with that of 0.82 J/cm^(3)for PEN.In addition,derived from the rearrangement of SPEN@BTNR and orientation of PEN after hot-stretching,the dielectric constant and breakdown strength of SPEN@BTNR/PEN with 15 wt.%fillers are further enhanced to 17.1 and 204.8 kV/mm,respectively,resulting in an energy storage density of 3.36 J/cm^(3).The boosting of energy storage density up to 310%provides a new idea for improving the performances of dielectric energy storage materials.展开更多
Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membr...Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.展开更多
A series of multiblock sulfonated poly(arylene ether sulfone)s(SPAES)with various block lengths and predictable ion exchange capacity were synthesized from 4,4’-difluorodiphenyl sulfone,4,4’-dihydrodiphenyl sulfone ...A series of multiblock sulfonated poly(arylene ether sulfone)s(SPAES)with various block lengths and predictable ion exchange capacity were synthesized from 4,4’-difluorodiphenyl sulfone,4,4’-dihydrodiphenyl sulfone and 4,4’-biphenol by one-pot and two-pot polymerization.;H-NMR and FTIR spectra confirmed the structure that sulfonic acid groups were introduced precisely on the poly(arylene ether sulfone)s by post-sulfonation which resulted in controllable sulfonation degree.The proton exchange membranes(PEMs)-based SPAES displayed excellent dimensional,thermal,antioxidant stability,proton conductivity and mechanical properties(maximum tensile stress>35 MPa).Thermogravimetric analysis indicated the prepared SPAES began to degrade above 310℃.The effects of polymerization processes,those were,one-pot hydrophobic segment process,one-pot hydrophilic segment process and two-pot process,on the properties of polymers were investigated.The proton conductivity and microphase separation of SPAES PEMs increased in order of those prepared by one-pot hydrophobic segment process,two-pot process and one-pot hydrophilic segment process.The highest conductivities of SPAES synthesized by the above processes under 80℃ and 100%relative humidity were 213(MS4),297(MB3)and 360 mS·cm^(-1)(MQ2),respectively.展开更多
A series of comb-shaped poly(arylene ether sulfone)s containing pendant 2-methyl-3-alkylimidazolitun group(ImPAES-Cx,x=1,6,10)was prepared and characterized as novel anion exchange membranes.These Im-PAES-Cx membranes...A series of comb-shaped poly(arylene ether sulfone)s containing pendant 2-methyl-3-alkylimidazolitun group(ImPAES-Cx,x=1,6,10)was prepared and characterized as novel anion exchange membranes.These Im-PAES-Cx membranes were obtained by benzylic bromination and imidazolium functionalization.The characteristic nano-phase separation structure was formed in membranes with longer alkyl side chains,as confmned by small-angle X-ray scattering.The nano-phase separation structures endowed ImPAES-Cx membranes with improved ionic conductivity,dimensional stability(at least 60% decrease water uptake and swelling ratio at 60℃)and mechanical properties,together with excellent alkaline stability.Especially,ImPAES-C6 membranes possessed enhanced hydroxide conductivity and chemical stability simultaneously.These results suggest that it is a feasible strategy to introduce appropriate length of alkyl side chains into anion exchange membranes(AEMs)to improve the performance.展开更多
High-quality film capacitors are widely used in many fields such as new energy vehicles,electronic communications,etc.,due to their advantages in wide frequency response and low dielectric loss.The dielectric film is ...High-quality film capacitors are widely used in many fields such as new energy vehicles,electronic communications,etc.,due to their advantages in wide frequency response and low dielectric loss.The dielectric film is a crucial part of the film capacitor,and its properties have an important impact on the performance and use conditions of the film capacitor.In this work,a novel high-temperature-resistant dielectric film was prepared.Firstly,the Bi_(2)S_(3)/rGO-CN fillers were prepared by hydrothermal method combined with cyanation treatment,and then added to the poly(arylene ether nitrile)(PEN)matrix to prepare the dielectric film materials(PEN/Bi_(2)S_(3)/rGO-CN).After high temperature treatment,the fillers Bi_(2)S_(3)/rGO-CN reacted with the PEN matrix,and the composites materials transformed into a thermosetting hybrid film(PEN-Bi_(2)S_(3)/rGO)with gel content of 97.88%.The prepared hybrid dielectric films did not decompose significantly before 400℃,and showed a glass transition temperature(Tg)of up to 252.4℃,which could increase the effective use temperature of the materials.Compared with the composite films without heat treatment,they exhibit better mechanical properties,with further improvement in tensile strength and elastic modulus,and a decrease in elongation at break.The dielectric constant of the hybrid films can be up to 6.8 while the dielectric loss is only about 0.02 at 1 kHz.Moreover,the hybrid films showed excellent dielectric stability during temperature changes,and remain relatively stable before 250℃,which is suitable as a high-temperature-resistant high-dielectric material and is more advantageous for practical applications.展开更多
Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes...Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs.展开更多
In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed...In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed and prepared on the basis of considering the influences of polymer backbone,cationic group species and the connection way between the cations and polymer chains.The synthetic method,structure and ion-exchange capacity,water absorption,swelling,hydroxide conductivity and alkaline stability of the obtained AEMs were studied.A comparative study with other reported AEMs was also performed for further exploration of the relationship between the structure and properties.These AEMs with flexible side-chain-type quaternary phosphonium cations displayed good comprehensive properties.Their water uptakes and swelling ratios were in the range of 11.6%–22.7%and 4.4%–7.8%at 60℃,respectively.They had hydroxide conductivity in the range of 28.6–45.8 mS cm^-1 at 60℃.Moreover,these AEMs also exhibited improved alkaline stability,and the hydroxide conductivity for PAEN-TPP-0.35 could remain 82.1%and 80.6%of its initial value at 60 and 90℃in 2 mol L^-1 NaOH solution for480 h,respectively.展开更多
Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,thei...Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,their applications have been extended from engineering plastics to optoelectronic materials.In this review,various kinds of functional PAEs used as fluorescent polymers,host polymers and phosphorescent polymers in organic light-emitting diodes(OLEDs) are outlined,and their molecular design,synthesis and device performance are overviewed.展开更多
Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinki...Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinking agents in the presence of Cu(I) catalyst via the azide-alkyne click reaction. The influences of the chain length of crosslinking agents on the poly(phthalazinone ether sulfone ketone) system were studied. FTIR and DSC tests demonstrated certain crosslinking by azide-alkyne reaction with the formation of triazole ring. DSC results showed that curing temperature shifted to lower temperatures considerably in the presence of Cu(I) catalyst. TGA showed cured polymers were of much higher thermal stability, including higher thermal decomposition temperatures and higher char-yielding properties. After being cured, the polymers became insoluble in organic solvents and the gel fraction of the cured polymers exceeded 71%. Wide-angle X-ray diffraction results indicated there was a short distance order in the poly(ether sulfone) (PES) main chain except for the azido methyl poly(phthalazinone ether sulfone ketone) and 4,4'-bis(2-propynyloxy) biphenyl (AMPPESK-BP) system.展开更多
Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with th...Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with the structure of a mechanically strong sulfonated poly(arylene ether sulfone)(SPAES)dense layer composited on a porous glass fiber(GF)substrate is designed.The SPAES dense layer that faces the Zn anode containing abundant sulfonic acid groups effectively promotes the desolvation process of hydrated Zn ions,guides uniform Zn ion transfer,and blocks anions and water,contributing to dendrite-free and highly reversible Zn plating/stripping cycles,while the porous GF substrate retains high electrolyte uptake.As a result,the Zn symmetric cell with the Janus separator demonstrates an ultralong cycling lifespan of over 2000 h at the areal capacity of 1 m A h cm^(-2),which is 23-fold superior to that with a pristine glass fiber separator(<90 h).More impressively,the as-prepared Janus separator enables outstanding rate performance and excellent cycling stability of full Zn ion batteries with diverse cathode materials.For instance,when paired with the V_2O_(5)cathode,the full battery with a Janus separator attains an ultrahigh initial specific capacity of 416.3 m A h g^(-1)and capacity retention of 60%over 450 cycles at 1 A g^(-1),exceeding that with a glass fiber separator.Hence,this work provides a facile yet effective approach to mitigating the dendrites formation and ameliorating the parasitic reactions of Zn metal anodes for high-performance Zn ion batteries.展开更多
文摘A series of novel poly(aryl ether nitrile)s containing phthalazinone moiety were synthesized by the nucleophilic displacement reaction of bisphenol-like monomers (I) with 2,6-difluorobenzonitrile. The inherent viscosities ranged from 0.46 to 1.07 dL g^-1. The glass transition temperatures were in the range of 277-295℃, and the temperatures for 10% weight loss in nitrogen atmosphere were found between 495 and 527 ℃. The structures of these resultant polymers were confirmed by FT-IR and 1^H NMR. Moreover, the properties of poly(aryl ether nitrile)s including solubility and crystallinity were also studied.
基金This work was financially supported by the National Science Foundation of China (NSFC) (Key project, No. 29734120)the China High-Tech Development 863 Program (No. 2003AA302410)+1 种基金Natural Science Foundation of Guangdong Province (Excellent Team Project, No. 015007)Canton Province Sci & Tech Bureau (Key Strategic Project, No. A1100402) and Guangzhou Sci & Tech Bureau
文摘A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by ^1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.
基金This work was supported by National Science Foundation of China (No. 20264001 ), National Science Foundation of Jiangxi Province, Innovation Fund for Technology Based Firms of China (No. 06C26213601342).
文摘A series of Poly(arly ether sulfone ether ketone)s containing pendant methyl groups were synthesized by the reaction of 4,4'-[sulfonylbis (1,4-phenylene)dioxy] dibenzoyl chloride (SODBC) with 4,4'- diphenoxy diphenylsulfone (DPODPS), 4,4'- di(2-methylphenoxy) diphenylsulfone (o-Me-DPODPS), 4,4'- di(3-methylphenoxy) diphenylsulfone (m-Me-DPODPS), 4,4'- di (2,6-bimethylphenoxy) biphenylsulfone(o-Me2-DPODPS) respectively, in a mixture of 1,2-dichloroethane (DCE) and N-methylpyrrolidone (NMP). These reactions were catalyzed by anhydrous aluminum chloride (AlCl). The characteristic of copolymers were studied by means of advanced analytical techniques such as FT-IR,1H-NMR, DSC, TGA and WAXD. The results show glass transition temperature (Tg) in the range of 193-206℃, thermally stable in excess of 434℃ and excellent solubility in polar solvents. Methyl-substituted Poly(aryl ether sulfone ketone)s had higher glass transition temperatures, lower initial decomposition temperatures than the unsubstituted ones.
基金the National Natural Science Foundation of China(No.21978237)Natural Science Foundation of Shaanxi Province(Nos.2023-JC-YB-370 and 2024-JC-YBQN-0140)Shaanxi Fundamental Science Research Project for Chemistry and Biology(No.22JHQ032)are gratefully acknowledged.
文摘Dielectric energy storage materials that are extensively employed in capacitors and other electronic devices have attracted increasing attentions amid the rapid progress of electronic technology.However,the commercialized polymeric and ceramic dielectric materials characterized by low energy storage density face numerous limitations in practical applications.In this study,we report the simultaneous enhancement of dielectric properties of poly(arylene ether nitrile)(PEN)through the incorporating of sulfonated PEN(SPEN)modified barium titanate nanorods(BTNR)(SPEN@BTNR)and hot-stretching.BTNR is synthesized using a two-step hydrothermal method,aminated with KH550,and then reacted with SPEN to form the cladding-modified SPEN@BTNR.Due to the intrinsic high permittivity of barium titanate(BT)and enhanced compatibility between SPEN@BTNR and PEN stemming from the cladding of SPEN,the dielectric constant and breakdown strength of SPEN@BTNR/PEN composite are as high as 14.0 at 103 Hz and 198.1 kV/mm at the doping amount of 15 wt.%,respectively.As a result,the energy storage density of SPEN@BTNR/PEN is increased to 2.43 J/cm^(3),compared with that of 0.82 J/cm^(3)for PEN.In addition,derived from the rearrangement of SPEN@BTNR and orientation of PEN after hot-stretching,the dielectric constant and breakdown strength of SPEN@BTNR/PEN with 15 wt.%fillers are further enhanced to 17.1 and 204.8 kV/mm,respectively,resulting in an energy storage density of 3.36 J/cm^(3).The boosting of energy storage density up to 310%provides a new idea for improving the performances of dielectric energy storage materials.
基金financially supported by the National Natural Science Foundation of China(No.22271022)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS342)supported by the China Scholarship Council(CSC No.201802335014).
文摘Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.
基金financially supported by the National Natural Science Foundation of China(No.21306010)。
文摘A series of multiblock sulfonated poly(arylene ether sulfone)s(SPAES)with various block lengths and predictable ion exchange capacity were synthesized from 4,4’-difluorodiphenyl sulfone,4,4’-dihydrodiphenyl sulfone and 4,4’-biphenol by one-pot and two-pot polymerization.;H-NMR and FTIR spectra confirmed the structure that sulfonic acid groups were introduced precisely on the poly(arylene ether sulfone)s by post-sulfonation which resulted in controllable sulfonation degree.The proton exchange membranes(PEMs)-based SPAES displayed excellent dimensional,thermal,antioxidant stability,proton conductivity and mechanical properties(maximum tensile stress>35 MPa).Thermogravimetric analysis indicated the prepared SPAES began to degrade above 310℃.The effects of polymerization processes,those were,one-pot hydrophobic segment process,one-pot hydrophilic segment process and two-pot process,on the properties of polymers were investigated.The proton conductivity and microphase separation of SPAES PEMs increased in order of those prepared by one-pot hydrophobic segment process,two-pot process and one-pot hydrophilic segment process.The highest conductivities of SPAES synthesized by the above processes under 80℃ and 100%relative humidity were 213(MS4),297(MB3)and 360 mS·cm^(-1)(MQ2),respectively.
基金the National Natural Science Foundation of China(No.21474036).
文摘A series of comb-shaped poly(arylene ether sulfone)s containing pendant 2-methyl-3-alkylimidazolitun group(ImPAES-Cx,x=1,6,10)was prepared and characterized as novel anion exchange membranes.These Im-PAES-Cx membranes were obtained by benzylic bromination and imidazolium functionalization.The characteristic nano-phase separation structure was formed in membranes with longer alkyl side chains,as confmned by small-angle X-ray scattering.The nano-phase separation structures endowed ImPAES-Cx membranes with improved ionic conductivity,dimensional stability(at least 60% decrease water uptake and swelling ratio at 60℃)and mechanical properties,together with excellent alkaline stability.Especially,ImPAES-C6 membranes possessed enhanced hydroxide conductivity and chemical stability simultaneously.These results suggest that it is a feasible strategy to introduce appropriate length of alkyl side chains into anion exchange membranes(AEMs)to improve the performance.
基金financially supported by the National Natural Science Foundation of China(Nos.52073039,51903029,21805027,51803020 and 51773028)International Science and Technology Cooperation Project(No.52011530027)+3 种基金Major Special Projects of Sichuan Province(Nos.2020YFG0270,2020ZDZX0020,2019ZDZX0027 and 2019ZDZX0016)the Fundamental Research Funds for the Central Universities(No.ZYGX2019J026)Sichuan Science and Technology Program(Nos.2019YJ0197,2019YFG0056 and 2020YFG0100)International Science and Technology Cooperation Project from Chengdu municipal government(No.2019-GH02-00037-HZ)。
文摘High-quality film capacitors are widely used in many fields such as new energy vehicles,electronic communications,etc.,due to their advantages in wide frequency response and low dielectric loss.The dielectric film is a crucial part of the film capacitor,and its properties have an important impact on the performance and use conditions of the film capacitor.In this work,a novel high-temperature-resistant dielectric film was prepared.Firstly,the Bi_(2)S_(3)/rGO-CN fillers were prepared by hydrothermal method combined with cyanation treatment,and then added to the poly(arylene ether nitrile)(PEN)matrix to prepare the dielectric film materials(PEN/Bi_(2)S_(3)/rGO-CN).After high temperature treatment,the fillers Bi_(2)S_(3)/rGO-CN reacted with the PEN matrix,and the composites materials transformed into a thermosetting hybrid film(PEN-Bi_(2)S_(3)/rGO)with gel content of 97.88%.The prepared hybrid dielectric films did not decompose significantly before 400℃,and showed a glass transition temperature(Tg)of up to 252.4℃,which could increase the effective use temperature of the materials.Compared with the composite films without heat treatment,they exhibit better mechanical properties,with further improvement in tensile strength and elastic modulus,and a decrease in elongation at break.The dielectric constant of the hybrid films can be up to 6.8 while the dielectric loss is only about 0.02 at 1 kHz.Moreover,the hybrid films showed excellent dielectric stability during temperature changes,and remain relatively stable before 250℃,which is suitable as a high-temperature-resistant high-dielectric material and is more advantageous for practical applications.
基金the financial support of the National Natural Science Foundation of China(Nos.22075276,U19A2016,U22B6012)CAS Strategic Leading Science&Technology Program(A)(No.XDA21070000)+2 种基金Dalian High Level Talent Innovation Support Program(No.2020RD05)the Development of Scientic and Technological Project of the Jilin Province(No.20210101126JC)International Partnership Program of Chinese Academy of Sciences(No.121421KYSB20210028)。
文摘Vanadium flow batteries(VFBs)have drawn considerable attention as an emerging technology for largescale energy storage systems(ESSs).One of the pivotal challenges is the availability of eligible ion exchange membranes(ICMs)that provide high ion selectivity,proton conductivity,and stability under rigorous condition.Herein,a‘side-chain-type’strategy has been employed to fabricate highly stable phenolphthalein-based cardo poly(arylene ether ketone)s(PAEKs)membrane with low area resistance(0.058Ωcm^(2)),in which flexible alkyl spacers effectively alleviated inductive withdrawing effect from terminal ion exchange groups thus enabling a stable backbone.The assembled VFBs based on PAEKs bearing pendent alkyl chain terminated with quaternary ammonium(Q-PPhEK)demonstrated an energy efficiency above 80%over 700 cycles at 160 mA/cm^(2).Such a remarkable results revealed that the side-chain-type strategy contributed to enhancing the ICMs stability in strong oxidizing environment,meanwhile,more interesting backbones would be woken with this design engaging in stable ICMs for VFBs.
基金supported by the National Natural Science Foundation of China (21404016)the Key Research Program of Jiangsu Province (BE2017645)+1 种基金the Six Talent Peaks Project of Jiangsu Province (XCL-078)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘In order to effectively improve the properties of anion exchange membrane(AEM)materials,a series of novel poly(aryl ether nitrile)s with flexible side-chain-type quaternary phosphonium cations(PAEN-TPP-x)were designed and prepared on the basis of considering the influences of polymer backbone,cationic group species and the connection way between the cations and polymer chains.The synthetic method,structure and ion-exchange capacity,water absorption,swelling,hydroxide conductivity and alkaline stability of the obtained AEMs were studied.A comparative study with other reported AEMs was also performed for further exploration of the relationship between the structure and properties.These AEMs with flexible side-chain-type quaternary phosphonium cations displayed good comprehensive properties.Their water uptakes and swelling ratios were in the range of 11.6%–22.7%and 4.4%–7.8%at 60℃,respectively.They had hydroxide conductivity in the range of 28.6–45.8 mS cm^-1 at 60℃.Moreover,these AEMs also exhibited improved alkaline stability,and the hydroxide conductivity for PAEN-TPP-0.35 could remain 82.1%and 80.6%of its initial value at 60 and 90℃in 2 mol L^-1 NaOH solution for480 h,respectively.
基金the National Natural Science Foundation of China(Nos.51573182,51203149,21204084,91333205)the 973 Project(No.2015CB655000)for financial support of this research
文摘Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,their applications have been extended from engineering plastics to optoelectronic materials.In this review,various kinds of functional PAEs used as fluorescent polymers,host polymers and phosphorescent polymers in organic light-emitting diodes(OLEDs) are outlined,and their molecular design,synthesis and device performance are overviewed.
基金financially supported by the National Natural Science Foundation of China(No.51273029)
文摘Functionalized poly(phthalazinone ether sulfone ketone) was synthesized by successive chloromethylation and azidation, followed by curing reaction with the propargyl end-groups of various molecular weight crosslinking agents in the presence of Cu(I) catalyst via the azide-alkyne click reaction. The influences of the chain length of crosslinking agents on the poly(phthalazinone ether sulfone ketone) system were studied. FTIR and DSC tests demonstrated certain crosslinking by azide-alkyne reaction with the formation of triazole ring. DSC results showed that curing temperature shifted to lower temperatures considerably in the presence of Cu(I) catalyst. TGA showed cured polymers were of much higher thermal stability, including higher thermal decomposition temperatures and higher char-yielding properties. After being cured, the polymers became insoluble in organic solvents and the gel fraction of the cured polymers exceeded 71%. Wide-angle X-ray diffraction results indicated there was a short distance order in the poly(ether sulfone) (PES) main chain except for the azido methyl poly(phthalazinone ether sulfone ketone) and 4,4'-bis(2-propynyloxy) biphenyl (AMPPESK-BP) system.
基金fully supported by the Research Grant Council Collaborative Research Fund of the Hong Kong Special Administrative Region,China (C5031-20G)。
文摘Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with the structure of a mechanically strong sulfonated poly(arylene ether sulfone)(SPAES)dense layer composited on a porous glass fiber(GF)substrate is designed.The SPAES dense layer that faces the Zn anode containing abundant sulfonic acid groups effectively promotes the desolvation process of hydrated Zn ions,guides uniform Zn ion transfer,and blocks anions and water,contributing to dendrite-free and highly reversible Zn plating/stripping cycles,while the porous GF substrate retains high electrolyte uptake.As a result,the Zn symmetric cell with the Janus separator demonstrates an ultralong cycling lifespan of over 2000 h at the areal capacity of 1 m A h cm^(-2),which is 23-fold superior to that with a pristine glass fiber separator(<90 h).More impressively,the as-prepared Janus separator enables outstanding rate performance and excellent cycling stability of full Zn ion batteries with diverse cathode materials.For instance,when paired with the V_2O_(5)cathode,the full battery with a Janus separator attains an ultrahigh initial specific capacity of 416.3 m A h g^(-1)and capacity retention of 60%over 450 cycles at 1 A g^(-1),exceeding that with a glass fiber separator.Hence,this work provides a facile yet effective approach to mitigating the dendrites formation and ameliorating the parasitic reactions of Zn metal anodes for high-performance Zn ion batteries.