Synthetic inorganic pigments are most widely used in ceramic applications due to their excellent chemical and thermal stability and their lower toxicity to both human and environment as well.In the present work,black ...Synthetic inorganic pigments are most widely used in ceramic applications due to their excellent chemical and thermal stability and their lower toxicity to both human and environment as well.In the present work,black ceramic pigment CoFe_(2)O_(4)has been synthesized by the complex polymerization method(CPM)with good chemical homogeneity.In order to study the influence of variables on the process of obtaining pigment through CPM,2^((5-2))fractional factorial design with resolution III was used.The variables studied in the mathematical modeling were:citric acid/metal concentration,pre-calcination time,calcination temperature,calcination time,and calcination rate.Powder pigments were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-visible(UV-Vis)spectroscopy.Based on the results,the formation of cobalt ferrite phase(CoFe_(2)O_(4))with spinel structure was verified.The color of pigments obtained showed dark shades,from black to gray.The model adjusted to the conditions proposed in this study due to the determination coefficient of 99.9%and variance(R²)showed that all factors are significant at the confidence level of 95%.展开更多
Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerizatio...Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerization method using aniline, ammonium persulfate and hydrochloricarried as starting materials.Li4Ti5O12-PAn composite was characterized by X-ray diffractometry(XRD),infrared spectrum(IR)combined with electrochemical tests.The results show that the electrical conductivity is enhanced obviously due to the introduction of PAn to Li4Ti5O12.Li4Ti5O12-PAn composite exhibits better high-rate capability and cyclability than Li4Ti5O12.The composite can deliver a specific capacity of 191.3 and 148.9 mA·h/g,only 0.13%and 0.61%of the capacity is lose after being discharged 80 times at 0.1C and 2.0C,respectively.展开更多
In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundu...In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundum via a polymeric replication method. Effects of the mass ratio of SiC powder to white fused corundum powder( 1 ∶ 3,1 ∶ 1 and 3 ∶ 1) on the appearance,phase composition,sintering properties and thermal shock resistance were investigated. The research results indicate that the as-prepared Si C-Al2 O3 porous ceramics have uniform pores,and their linear shrinkage ratio,apparent porosity and bulk density reach 4. 70%,67. 17%and 0. 83 g·cm-3,respectively. The thermal shock cycles from 1 400 ℃ to room temperature reach 23 including 15 cycles in air cooling condition and then 8 cycles in water cooling condition. Their main phases areα-Al2 O3 and Al6 Si2 O13 as well as a small amount of SiC and free SiO2. The as-prepared porous ceramic with the ratio of m( SiC) ∶ m( Al2 O3) = 1∶ 1 possesses prior comprehensive properties.展开更多
During the course of study, we found that both poly (N-isopropylacrylamide ) (PNIP) and PNIP-Ab (enzyme-labelled antibody)could be adhere tightly to a cellulose acetale-nitrate membrane, and that the retention of PNI...During the course of study, we found that both poly (N-isopropylacrylamide ) (PNIP) and PNIP-Ab (enzyme-labelled antibody)could be adhere tightly to a cellulose acetale-nitrate membrane, and that the retention of PNIP-Ab on the membrane increased over 30-fold when compared with the unconjugated Ab.Thus we used this characteristic to develop a novel immunoassay method-polymer enzyme linked immunoassay method: homogeneous antigen-antibody reaction and heterogeneous separation process. When applied for detection of human serum HBsAg, this immunoassay system can detect as little as 1 ng/ml of human serum HBsAg.展开更多
In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally ca...In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.展开更多
This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir o...This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.展开更多
With the development of tertiary oil recovery, many new technologies, new standards, new operations and new regulations appear constantly. The original extensive and emergency management mode cant meet the development...With the development of tertiary oil recovery, many new technologies, new standards, new operations and new regulations appear constantly. The original extensive and emergency management mode cant meet the development requirements of tertiary oil recovery. At present, we cant seek a breakthrough in team-level organization from a deep technical level, but we can only formulate new standards, open up new ideas and challenge new methods from management or basic technology.展开更多
The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and...The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.展开更多
The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diff...The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diffractometer,scanning electron microscope and electrochemical techniques.The results show that PAn in the composites is amorphous.PAn formed in the reaction is deposited preferentially on the SnO2 particles,giving a SnO2-PAn composite,in which SnO2 is coated with PAn.SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles,suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.展开更多
Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by ...Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by γ-(2,3-epoxypropoxy) propytrimethoxysilane(KH-560). The interfacial interactions between UF microcapsules and KH-560 were studied by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectrometric analysis(XPS) of microcapsules. The surface topography of microcapsules was characterized by scanning electron microscopy(SEM). The thermal stability and mechanical properties were evaluated. FTIR and XPS results showed that there were physical and chemical combinations between the silicon coupling agent and the microcapsules surface. The thermal stability and mechanical property analysis showed that the addition of KH-560 could greatly improve the thermal stability, tensile property and elastic property. SEM results indicated that the addition of KH-560 could improve the bonding between the surface of microcapsules and resin matrix and improve the ability of self-healing.展开更多
Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR,^ 13C and ^1H NMR, X-ray ...Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR,^ 13C and ^1H NMR, X-ray photoelectron and Mossbauer spectra were studied, and formulae describing their composition were proposed. The complexes contained EG bonded as adduct and ester with citric acid ligand and did not contain ligands with deprotonated alcoholic groups. The complexes consisted of agglomerated spheres, 0.7-3 μm in diameter. The local composition of the products was established by energy dispersive X-ray microanalysis. The comparison of the number of the ligands, their average electrical charge and the esterification degree of mono-, di- and trimetallic complexes proved the mixed-metal nature of the species studied. The thermal decomposition of the complexes was studied and a general scheme of the processes taking place was proposed. Highly crystalline, phase homogeneous YaFe4AlO12 was produced after heating the respective complex at 1000 ℃. Ce-doped yttrium-iron garnet, similarly prepared, contained traces of CeO2.展开更多
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p...Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.展开更多
The high-purity and superfine high-entropy zirconate nanopowders,namely(Y_(0.25)La_(0.25)Sm_(0.25)Eu_(0.25))_(2)Zr_(2)O_(7)nanopowders,without agglomeration,were successfully synthesized via polymerized complex method...The high-purity and superfine high-entropy zirconate nanopowders,namely(Y_(0.25)La_(0.25)Sm_(0.25)Eu_(0.25))_(2)Zr_(2)O_(7)nanopowders,without agglomeration,were successfully synthesized via polymerized complex method at low temperatures for the first time.The results showed that the crystallinity degree,lattice strain,and particle size of the as-synthesized powders were gradually enhanced with the increase of the synthesis temperature from 800 to 1300℃.The as-synthesized powders involved fluorite phase in the range of 800-1200℃while they underwent the phase evolution from fluorite to pyrochlore at 1300℃.It is worth mentioning that the as-synthesized powders at 900℃are of the highest quality among all the as-synthesized powders,which is due to the fact that they not only possess the particle size of 11 nm without agglomeration,but also show high purity and good compositional uniformity.展开更多
The perovskite La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) fuel cell electrolyte was prepared by a polymeric method using poly(vinyl alcohol) (PVA). The LSGM precursor powder was examined by thermogravimetric and differential...The perovskite La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) fuel cell electrolyte was prepared by a polymeric method using poly(vinyl alcohol) (PVA). The LSGM precursor powder was examined by thermogravimetric and differential thermal analysis (TG/DTA) and Fourier transform infrared (FTIR) spectroscopy. It was found that thermal decomposition of the LSGM precursor powder occurs in a number of different stages, and complete decomposition of the precursor is obtained at 1000 degrees C X-ray diffraction (XRD) showed that calcined powder contains three secondary phases, namely La4Ga2O9, LaSrGa3O7, and LaSrGaO4, even after calcination at 1100 degrees C Furthermore, the fraction of secondary phases decreases with increasing calcination temperature. Single phase perovskite LSGM pellets with a relative density of 97% were obtained after sintering at 1450 degrees C for 10 h. It was therefore shown that the powder prepared by the simple PVA method is fine, highly reactive, and sinterable. The electrical properties of LSGM pellets were characterised by impedance spectroscopy. The conductivity of the LSGM pellets sintered at 1450 degrees C for 10 h was 8.24x10(-2) S/cm at 800 degrees C.展开更多
Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polym...Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultravioletvisible (UV-vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV.展开更多
Literature has reported the synthesis of barium calcium titanates by various synthesis methods such as solid state reaction,co-precipitation and polymer precursors.These compounds are usually obtained using calcium ca...Literature has reported the synthesis of barium calcium titanates by various synthesis methods such as solid state reaction,co-precipitation and polymer precursors.These compounds are usually obtained using calcium carbonate(CaCO_(3)),barium carbonate(BaCO3)and titanium oxide as starting materials.This study investigated the effect of different starting reagents on the synthesis of Ba_(0.8)Ca_(0.2)TiO_(3)(BCT)by complex polymerization method(CPM).Two sets of starting precursors were used:titanium citrate,CaCO_(3)and BaCO3,and titanium citrate and Ba1-xCaxCO3 solid solution precursor.Samples were crystallized at a temperature range from 400℃to 700℃for different time.The obtained powders were characterized by X-ray diffraction(XRD),thermogravimetry(TG)and differential thermal analysis(DTA),and Raman and infrared spectroscopy.The infrared spectroscopy indicated that the chelation processes of Ba,Ca,Ti and CA ions are very similar.The results showed that the use of CaCO_(3)and BaCO3 or Ba1-xCaxCO3 solid solution as precursors does not affect the final properties of BCT powders obtained by CPM.展开更多
Extracellular polymeric substances(EPS) produced by microorganisms represent biological macromolecules with unfathomable potentials and they are required to be explored further for their potential application as a b...Extracellular polymeric substances(EPS) produced by microorganisms represent biological macromolecules with unfathomable potentials and they are required to be explored further for their potential application as a bioflocculant in various wastewater sludge treatment. Although several studies already exist on biosynthetic pathways of different classical biopolymers like alginate and xanthan, no dedicated studies are available for EPS in sludge. This review highlights the EPS composition, functionality, and biodegradability for its potential use as a carbon source for production of other metabolites. Furthermore, the effect of various extraction methods(physical and chemical) on compositional, structural, physical and functional properties of microbial EPS has been addressed. The vital knowledge of the effect of extraction method on various important attributes of EPS can help to choose the suitable extraction method depending upon the intended use of EPS. The possible use of different molecular biological techniques for enhanced production of desired EPS was summarized.展开更多
基金support of the Brazilian research financing institutions:RECAM(Rede de Catalisadores Ambientais),CNPq,and CAPES.
文摘Synthetic inorganic pigments are most widely used in ceramic applications due to their excellent chemical and thermal stability and their lower toxicity to both human and environment as well.In the present work,black ceramic pigment CoFe_(2)O_(4)has been synthesized by the complex polymerization method(CPM)with good chemical homogeneity.In order to study the influence of variables on the process of obtaining pigment through CPM,2^((5-2))fractional factorial design with resolution III was used.The variables studied in the mathematical modeling were:citric acid/metal concentration,pre-calcination time,calcination temperature,calcination time,and calcination rate.Powder pigments were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-visible(UV-Vis)spectroscopy.Based on the results,the formation of cobalt ferrite phase(CoFe_(2)O_(4))with spinel structure was verified.The color of pigments obtained showed dark shades,from black to gray.The model adjusted to the conditions proposed in this study due to the determination coefficient of 99.9%and variance(R²)showed that all factors are significant at the confidence level of 95%.
基金Project(20376086)supported by the National Natural Science Foundation of ChinaProject(2005037700)supported by Postdoctora Science Foundation of China+2 种基金Project(07JJ3014)supported by Hunan Provincial Natural Science Foundation of ChinaProject(07A058)supported by Scientific Research Fund of Hunan Provincial Education DepartmentProject(2004107)supported by Postdoctoral Science Foundation of Central South University,China
文摘Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerization method using aniline, ammonium persulfate and hydrochloricarried as starting materials.Li4Ti5O12-PAn composite was characterized by X-ray diffractometry(XRD),infrared spectrum(IR)combined with electrochemical tests.The results show that the electrical conductivity is enhanced obviously due to the introduction of PAn to Li4Ti5O12.Li4Ti5O12-PAn composite exhibits better high-rate capability and cyclability than Li4Ti5O12.The composite can deliver a specific capacity of 191.3 and 148.9 mA·h/g,only 0.13%and 0.61%of the capacity is lose after being discharged 80 times at 0.1C and 2.0C,respectively.
文摘In order to fabricate porous ceramics with good properties and proper production cost,SiC-Al2 O3 porous ceramics were prepared at 1 450 ℃ for 2 h from the powders of commercial silicon carbide and white fused corundum via a polymeric replication method. Effects of the mass ratio of SiC powder to white fused corundum powder( 1 ∶ 3,1 ∶ 1 and 3 ∶ 1) on the appearance,phase composition,sintering properties and thermal shock resistance were investigated. The research results indicate that the as-prepared Si C-Al2 O3 porous ceramics have uniform pores,and their linear shrinkage ratio,apparent porosity and bulk density reach 4. 70%,67. 17%and 0. 83 g·cm-3,respectively. The thermal shock cycles from 1 400 ℃ to room temperature reach 23 including 15 cycles in air cooling condition and then 8 cycles in water cooling condition. Their main phases areα-Al2 O3 and Al6 Si2 O13 as well as a small amount of SiC and free SiO2. The as-prepared porous ceramic with the ratio of m( SiC) ∶ m( Al2 O3) = 1∶ 1 possesses prior comprehensive properties.
文摘During the course of study, we found that both poly (N-isopropylacrylamide ) (PNIP) and PNIP-Ab (enzyme-labelled antibody)could be adhere tightly to a cellulose acetale-nitrate membrane, and that the retention of PNIP-Ab on the membrane increased over 30-fold when compared with the unconjugated Ab.Thus we used this characteristic to develop a novel immunoassay method-polymer enzyme linked immunoassay method: homogeneous antigen-antibody reaction and heterogeneous separation process. When applied for detection of human serum HBsAg, this immunoassay system can detect as little as 1 ng/ml of human serum HBsAg.
基金The authors wish to acknowledge RECAT-Petrobras,Rede de Hidrogenio-MCTANP for their financial support and scholarship grants.
文摘In the current work, LaNiO3 perovskite was synthesized using the polymeric precursor method. The materials were thermally treated at 300°C for 2 hours, subsequently supported on alumina or zirconia and finally calcined at 800°C for 4 hours. The resulting samples were characterized by X-ray diffraction, thermogravimetry, BET surface area and thermo-programmed reduction. Steam reforming reactions were carried out at 750°C and 6 bar during 4 hours using a pilot reactor under a H2O:CH4 ratio of 2.5. The mass of catalysts was about 5.7 g. X-ray diffraction patterns confirmed the formation of the perovskite structure in all samples prepared. The results also showed that lanthanum nickelate was more efficient when supported on alumina than zirconia. Finally, it was observed that the methane conversion was approximately 94% and the selectivity to hydrogen was about 70%. In all cases low selectivity to CO and CO2 was verified.
文摘This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.
文摘With the development of tertiary oil recovery, many new technologies, new standards, new operations and new regulations appear constantly. The original extensive and emergency management mode cant meet the development requirements of tertiary oil recovery. At present, we cant seek a breakthrough in team-level organization from a deep technical level, but we can only formulate new standards, open up new ideas and challenge new methods from management or basic technology.
基金This work is supported by the National Natural Science Foundation of China (No.11402210), the Natural Science Foundation of Shanxi Province (No.2012011019-2), and the Doctoral Fund of Taiyuan University of Science and Technology (No.20152024).
文摘The irrationality of existing phase field model is analyzed and a modified phase-field model is proposed for polymer crystal growth, in which the parameters are obtained from real materials and very simple to use, and most importantly, no paradoxical parameters appeared in the model. Moreover, it can simulate different microstructure patterns owing to the use of a new different free energy function for the simulation of morphologies of polymer. The new free energy function considers both the cases of T〈Tm and T≥Tm, which is more reasonable than that in published literatures that all ignored the T≥Tm case. In order to show the validity of the modified model, the finite difference method is used to solve the model and different crystallization morphologies during the solidification process of isotactic polystyrene are obtained under different conditions. Numerical results show that the growth rate of the initial secondary arms is obviously increased as the anisotropy strength increases. But the anisotropy strength seems to have no apparent effect on the global growth rate. The whole growth process of the dendrite depends mainly upon the latent heat and the latent heat has a direct effect on the tip radius and tip velocity of side branches.
基金Project(20376086) supported by the National Natural Science Foundation of ChinaProject(2005037700) supported by the Postdoctoral Science Foundation of China+1 种基金Project(07A058) supported by the Scientific Research Fund of Hunan Provincial Education DepartmentProject(07JJ3014) supported by Hunan Provincial Natural Science Foundation of China
文摘The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diffractometer,scanning electron microscope and electrochemical techniques.The results show that PAn in the composites is amorphous.PAn formed in the reaction is deposited preferentially on the SnO2 particles,giving a SnO2-PAn composite,in which SnO2 is coated with PAn.SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles,suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.
基金Funded by the Science and Technology Planning Project of Guangdong Province,China(2013B010404045)the National Natural Science Foundation of China(No.21106022)the Educational Commission of Guangdong Province,China(Yq2013100)
文摘Poly(urea-formaldehyde)(UF) microcapsules with epoxy resin E-51 as core material used as self-healing materials were prepared by interfacial polymerization method. The surface of UF microcapsules was modifi ed by γ-(2,3-epoxypropoxy) propytrimethoxysilane(KH-560). The interfacial interactions between UF microcapsules and KH-560 were studied by Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectrometric analysis(XPS) of microcapsules. The surface topography of microcapsules was characterized by scanning electron microscopy(SEM). The thermal stability and mechanical properties were evaluated. FTIR and XPS results showed that there were physical and chemical combinations between the silicon coupling agent and the microcapsules surface. The thermal stability and mechanical property analysis showed that the addition of KH-560 could greatly improve the thermal stability, tensile property and elastic property. SEM results indicated that the addition of KH-560 could improve the bonding between the surface of microcapsules and resin matrix and improve the ability of self-healing.
文摘Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR,^ 13C and ^1H NMR, X-ray photoelectron and Mossbauer spectra were studied, and formulae describing their composition were proposed. The complexes contained EG bonded as adduct and ester with citric acid ligand and did not contain ligands with deprotonated alcoholic groups. The complexes consisted of agglomerated spheres, 0.7-3 μm in diameter. The local composition of the products was established by energy dispersive X-ray microanalysis. The comparison of the number of the ligands, their average electrical charge and the esterification degree of mono-, di- and trimetallic complexes proved the mixed-metal nature of the species studied. The thermal decomposition of the complexes was studied and a general scheme of the processes taking place was proposed. Highly crystalline, phase homogeneous YaFe4AlO12 was produced after heating the respective complex at 1000 ℃. Ce-doped yttrium-iron garnet, similarly prepared, contained traces of CeO2.
文摘Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.
基金support from the National Natural Science Foundation of China(Nos.52122204 and 51972116)the Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515012145 and 2021A1515010603)+1 种基金the Fundamental Research Foundation for the Central Universities(No.2020ZYGXZR080)the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratory(No.JCKYS2020607003).
文摘The high-purity and superfine high-entropy zirconate nanopowders,namely(Y_(0.25)La_(0.25)Sm_(0.25)Eu_(0.25))_(2)Zr_(2)O_(7)nanopowders,without agglomeration,were successfully synthesized via polymerized complex method at low temperatures for the first time.The results showed that the crystallinity degree,lattice strain,and particle size of the as-synthesized powders were gradually enhanced with the increase of the synthesis temperature from 800 to 1300℃.The as-synthesized powders involved fluorite phase in the range of 800-1200℃while they underwent the phase evolution from fluorite to pyrochlore at 1300℃.It is worth mentioning that the as-synthesized powders at 900℃are of the highest quality among all the as-synthesized powders,which is due to the fact that they not only possess the particle size of 11 nm without agglomeration,but also show high purity and good compositional uniformity.
文摘The perovskite La0.8Sr0.2Ga0.83Mg0.17O2.815 (LSGM) fuel cell electrolyte was prepared by a polymeric method using poly(vinyl alcohol) (PVA). The LSGM precursor powder was examined by thermogravimetric and differential thermal analysis (TG/DTA) and Fourier transform infrared (FTIR) spectroscopy. It was found that thermal decomposition of the LSGM precursor powder occurs in a number of different stages, and complete decomposition of the precursor is obtained at 1000 degrees C X-ray diffraction (XRD) showed that calcined powder contains three secondary phases, namely La4Ga2O9, LaSrGa3O7, and LaSrGaO4, even after calcination at 1100 degrees C Furthermore, the fraction of secondary phases decreases with increasing calcination temperature. Single phase perovskite LSGM pellets with a relative density of 97% were obtained after sintering at 1450 degrees C for 10 h. It was therefore shown that the powder prepared by the simple PVA method is fine, highly reactive, and sinterable. The electrical properties of LSGM pellets were characterised by impedance spectroscopy. The conductivity of the LSGM pellets sintered at 1450 degrees C for 10 h was 8.24x10(-2) S/cm at 800 degrees C.
基金financial support under the DST-PURSE scheme at Shivaji University,Kolhapur
文摘Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultravioletvisible (UV-vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV.
基金support of the Brazilian research financing institutions:CNPq,CAPES and FAPESP-CDMF 2013/07296-2.
文摘Literature has reported the synthesis of barium calcium titanates by various synthesis methods such as solid state reaction,co-precipitation and polymer precursors.These compounds are usually obtained using calcium carbonate(CaCO_(3)),barium carbonate(BaCO3)and titanium oxide as starting materials.This study investigated the effect of different starting reagents on the synthesis of Ba_(0.8)Ca_(0.2)TiO_(3)(BCT)by complex polymerization method(CPM).Two sets of starting precursors were used:titanium citrate,CaCO_(3)and BaCO3,and titanium citrate and Ba1-xCaxCO3 solid solution precursor.Samples were crystallized at a temperature range from 400℃to 700℃for different time.The obtained powders were characterized by X-ray diffraction(XRD),thermogravimetry(TG)and differential thermal analysis(DTA),and Raman and infrared spectroscopy.The infrared spectroscopy indicated that the chelation processes of Ba,Ca,Ti and CA ions are very similar.The results showed that the use of CaCO_(3)and BaCO3 or Ba1-xCaxCO3 solid solution as precursors does not affect the final properties of BCT powders obtained by CPM.
文摘Extracellular polymeric substances(EPS) produced by microorganisms represent biological macromolecules with unfathomable potentials and they are required to be explored further for their potential application as a bioflocculant in various wastewater sludge treatment. Although several studies already exist on biosynthetic pathways of different classical biopolymers like alginate and xanthan, no dedicated studies are available for EPS in sludge. This review highlights the EPS composition, functionality, and biodegradability for its potential use as a carbon source for production of other metabolites. Furthermore, the effect of various extraction methods(physical and chemical) on compositional, structural, physical and functional properties of microbial EPS has been addressed. The vital knowledge of the effect of extraction method on various important attributes of EPS can help to choose the suitable extraction method depending upon the intended use of EPS. The possible use of different molecular biological techniques for enhanced production of desired EPS was summarized.