This paper proposes new sufficient conditions for the exponential stability and stabilization.of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharit...This paper proposes new sufficient conditions for the exponential stability and stabilization.of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharitonov-type linear matrix inequalities (LMIs) and we develop control design methods based on LMIs for solving stabilization problem. Our method consists of a combination of the LMI approach and the use of parameter-dependent Lyapunov functionals, which allows to compute simultaneously the two bounds that characterize the exponetial stability rate of the solution. Numerical examples illustrating the conditions are given.展开更多
Robust predictive control algorithms were presented for polytopic uncertain linear discrete systems with time-delay subjected to actuator saturation. In the first algorithm, the parameter dependent state feedback mode...Robust predictive control algorithms were presented for polytopic uncertain linear discrete systems with time-delay subjected to actuator saturation. In the first algorithm, the parameter dependent state feedback model predictive control (MPC) law was obtained from minimizing the upper bound of the cost function subjected to several linear matrix inequality constraints. In order to reduce computation burden, a second robust MPC algorithm based on nominal performance cost was presented. The feasibility of the optimization problems guarantees that the algorithms are robustly stable. The simulation results verify the effectiveness of the proposed algorithms.展开更多
To obtain a stable and proper linear filter to make the filtering error system robustly and strictly passive, the problem of full-order robust passive filtering for continuous-time polytopic uncertain time-delay syste...To obtain a stable and proper linear filter to make the filtering error system robustly and strictly passive, the problem of full-order robust passive filtering for continuous-time polytopic uncertain time-delay systems was investigated. A criterion for the passivity of time-delay systems was firstly provided in terms of linear matrix inequalities (LMI). Then an LMI sufficient condition for the existence of a robust filter was established and a design procedure was proposed for this type of systems. A numerical example demonstrated the feasibility of the filtering design procedure.展开更多
This paper focuses on the problem of dissipative filtering for linear continuous-time polytopic uncertain time-delay systems. To obtain a stable and proper linear filter such that the filtering error system is strictl...This paper focuses on the problem of dissipative filtering for linear continuous-time polytopic uncertain time-delay systems. To obtain a stable and proper linear filter such that the filtering error system is strictly dissipative for all admissible uncertainties,a new dissipativity criterion which realizes separation between the Lyapunov matrices and the system dynamic matrices is firstly provided in terms of linear matrix inequalities ( LMI) . Then an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. One numerical example demonstrates less conservativeness of the proposed criterion,the other numerical example illustrates the validity of the proposed filter design.展开更多
Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, et...Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples.展开更多
The design of full-order robust H-infunity estimators is investigated for continuous-time polytopic uncertain systems, The main purpose is to obtain a stable and proper linear estimator such that the estimation error ...The design of full-order robust H-infunity estimators is investigated for continuous-time polytopic uncertain systems, The main purpose is to obtain a stable and proper linear estimator such that the estimation error system remains robustly stable with a prescribed H-infinity attenuation level. Based on a recently proposed H-infinity performance criterion which exhibits a kind of decoupling between the Lyapunov matrix and the system dynamic matrices, a sufficient condition for the existence of the robust estimator is provided in terms of linear matrix inequalities. It is shown that the proposed design strategy allows the use of parameter-dependent Lyapunov functions and hence it is less conservative than earlier results. A numerical example is employed to illustrate the feasibility and advantage of the proposed design.展开更多
This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filteri...This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.展开更多
The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear ...The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear matrix inequality (LMI) criterion on the FTPS is further provided. The definition of finite-time practical boundedness and a sufficient LMI criterion are also provided to overcome the exogenous disturbance. A numerical example is used to illustrate the effect of the proposed approach.展开更多
Based on two recent results, several new criteria of H2 performance for continuous-time linear systems are established by introducing two slack matrices. When used in robust analysis of systems with polytopic uncertai...Based on two recent results, several new criteria of H2 performance for continuous-time linear systems are established by introducing two slack matrices. When used in robust analysis of systems with polytopic uncertainties, they can reduce conservatism inherent in the earlier quadratic method and the established parameter-dependent Lyapunov function approach. Two numerical examples are included to illustrate the feasibility and advantage of the proposed representations.展开更多
A robust model predictive control algorithm for discrete linear systems with both state and input delays subjected to constrained input control is presented, where the polytopic uncertainties exist in both state matri...A robust model predictive control algorithm for discrete linear systems with both state and input delays subjected to constrained input control is presented, where the polytopic uncertainties exist in both state matrices and input matrices. The algorithm optimizes an upper bound with respect to a state feedback control law. The feedback control law is presented based on the construction of a parameter-dependent Lyapunov function. The above optimization problem can be formulated as a LMI-based optimization. The feasibility of the optimization problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the proposed algorithm.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
This paper addresses the Hankel norm of polytopic systems with time-varying delay. Delay-dependent sufficient conditions are presented such that the polytopic system is stable and the Hankel norm of the polytopic syst...This paper addresses the Hankel norm of polytopic systems with time-varying delay. Delay-dependent sufficient conditions are presented such that the polytopic system is stable and the Hankel norm of the polytopic system is less than a prescribed scalar in terms of linear matrix inequalities. A numerical example is presented.展开更多
Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of...Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model,...The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.展开更多
A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the paramet...A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.展开更多
We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a central...We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a centrally symmetric n-dimensional convex body of volume 1 is at least 2^(n)(9/8)^([n/3]).展开更多
文摘This paper proposes new sufficient conditions for the exponential stability and stabilization.of linear uncertain polytopic time-delay systems. The conditions for exponential stability are expressed in terms of Kharitonov-type linear matrix inequalities (LMIs) and we develop control design methods based on LMIs for solving stabilization problem. Our method consists of a combination of the LMI approach and the use of parameter-dependent Lyapunov functionals, which allows to compute simultaneously the two bounds that characterize the exponetial stability rate of the solution. Numerical examples illustrating the conditions are given.
基金The National High Technology Research and Development Program of China ( No2004AA412050)
文摘Robust predictive control algorithms were presented for polytopic uncertain linear discrete systems with time-delay subjected to actuator saturation. In the first algorithm, the parameter dependent state feedback model predictive control (MPC) law was obtained from minimizing the upper bound of the cost function subjected to several linear matrix inequality constraints. In order to reduce computation burden, a second robust MPC algorithm based on nominal performance cost was presented. The feasibility of the optimization problems guarantees that the algorithms are robustly stable. The simulation results verify the effectiveness of the proposed algorithms.
基金Sponsored by the Major Program of National Natural Science Foundation of China(Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To obtain a stable and proper linear filter to make the filtering error system robustly and strictly passive, the problem of full-order robust passive filtering for continuous-time polytopic uncertain time-delay systems was investigated. A criterion for the passivity of time-delay systems was firstly provided in terms of linear matrix inequalities (LMI). Then an LMI sufficient condition for the existence of a robust filter was established and a design procedure was proposed for this type of systems. A numerical example demonstrated the feasibility of the filtering design procedure.
基金Sponsored by the National Natural Science Foundation of China ( Grant No 60710002,60974044)Self-planned Task of State Key Laboratory of Robotics and System( Grant No SKLRS200801A03)
文摘This paper focuses on the problem of dissipative filtering for linear continuous-time polytopic uncertain time-delay systems. To obtain a stable and proper linear filter such that the filtering error system is strictly dissipative for all admissible uncertainties,a new dissipativity criterion which realizes separation between the Lyapunov matrices and the system dynamic matrices is firstly provided in terms of linear matrix inequalities ( LMI) . Then an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. One numerical example demonstrates less conservativeness of the proposed criterion,the other numerical example illustrates the validity of the proposed filter design.
文摘Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples.
文摘The design of full-order robust H-infunity estimators is investigated for continuous-time polytopic uncertain systems, The main purpose is to obtain a stable and proper linear estimator such that the estimation error system remains robustly stable with a prescribed H-infinity attenuation level. Based on a recently proposed H-infinity performance criterion which exhibits a kind of decoupling between the Lyapunov matrix and the system dynamic matrices, a sufficient condition for the existence of the robust estimator is provided in terms of linear matrix inequalities. It is shown that the proposed design strategy allows the use of parameter-dependent Lyapunov functions and hence it is less conservative than earlier results. A numerical example is employed to illustrate the feasibility and advantage of the proposed design.
基金supported by the Major Program of National Natural Science Foundation of China(60710002)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.
基金partially supported by Major Program of National Natural Science Foundation of China(60710002)Program for Changjiang Scholar and Innovative Research Team in University(PCSIRT).
文摘The problem of finite-time practical stability (FTPS) for time-varying polytopic systems is discussed. Three equivalent conditions for FTPS are first proposed. To facilitate the system analysis, a sufficient linear matrix inequality (LMI) criterion on the FTPS is further provided. The definition of finite-time practical boundedness and a sufficient LMI criterion are also provided to overcome the exogenous disturbance. A numerical example is used to illustrate the effect of the proposed approach.
基金This work was supported by the Chinese National Natural Science Foundation (No. 60374024) and Program for Changjiang Scholars and Innovative Research Team in University.
文摘Based on two recent results, several new criteria of H2 performance for continuous-time linear systems are established by introducing two slack matrices. When used in robust analysis of systems with polytopic uncertainties, they can reduce conservatism inherent in the earlier quadratic method and the established parameter-dependent Lyapunov function approach. Two numerical examples are included to illustrate the feasibility and advantage of the proposed representations.
文摘A robust model predictive control algorithm for discrete linear systems with both state and input delays subjected to constrained input control is presented, where the polytopic uncertainties exist in both state matrices and input matrices. The algorithm optimizes an upper bound with respect to a state feedback control law. The feedback control law is presented based on the construction of a parameter-dependent Lyapunov function. The above optimization problem can be formulated as a LMI-based optimization. The feasibility of the optimization problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the proposed algorithm.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320604) the State Key Program of National Natural Science Foundation of China (60534010)+3 种基金 National Natural Science Foundation of China (60975065 60974043) 2009 Doctoral Scientific Research Foundation Beijing University of Technology (X0002999200905) the Funds for Creative Research Groups of China (60821063) the 111 Project (B08015)
基金GuangDong Province Natural Science Foundation of China (No.5300181)South China University of Technology Natural Science FoundationGuangdong Province Power Automotive Lab's Open Foundation.
文摘This paper addresses the Hankel norm of polytopic systems with time-varying delay. Delay-dependent sufficient conditions are presented such that the polytopic system is stable and the Hankel norm of the polytopic system is less than a prescribed scalar in terms of linear matrix inequalities. A numerical example is presented.
基金Project (No. 60374028) supported by the National Natural ScienceFoundation of China
文摘Multi-objective robust state-feedback controller synthesis problems for linear discrete-time uncertain systems are addressed. Based on parameter-dependent Lyapunov functions, the Gl2 and GH2 norm expressed in terms of LMI (Linear Matrix Inequality) characterizations are further generalized to cope with the robust analysis for convex polytopic uncertain system. Robust state-feedback controller synthesis conditions are also derived for this class of uncertain systems. Using the above results, multi-objective state-feedback controller synthesis procedures which involve the LMI optimization technique are developed and less conservative than the existing one. An illustrative example verified the validity of the approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金This study was supported by the Key Program of Ministry of Education of China (01066)
文摘The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Pro-gram of China(863 Program)(No.2007AA01Z2B4).
文摘A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.
文摘We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a centrally symmetric n-dimensional convex body of volume 1 is at least 2^(n)(9/8)^([n/3]).