期刊文献+
共找到32,079篇文章
< 1 2 250 >
每页显示 20 50 100
Towards trustworthy multi-modal motion prediction:Holistic evaluation and interpretability of outputs
1
作者 Sandra Carrasco Limeros Sylwia Majchrowska +3 位作者 Joakim Johnander Christoffer Petersson MiguelÁngel Sotelo David Fernández Llorca 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期557-572,共16页
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po... Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability. 展开更多
关键词 autonomous vehicles EVALUATION interpretability multi-modal motion prediction ROBUSTNESS trustworthy AI
在线阅读 下载PDF
THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector
2
作者 Monerah Alawadh Ahmed Barnawi 《Computers, Materials & Continua》 SCIE EI 2024年第6期4995-5015,共21页
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f... Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes. 展开更多
关键词 Association rule learning POST-PROCESSING PREDICTIVE machine learning rule interpretability
在线阅读 下载PDF
Deep radio signal clustering with interpretability analysis based on saliency map
3
作者 Huaji Zhou Jing Bai +3 位作者 Yiran Wang Junjie Ren Xiaoniu Yang Licheng Jiao 《Digital Communications and Networks》 CSCD 2024年第5期1448-1458,共11页
With the development of information technology,radio communication technology has made rapid progress.Many radio signals that have appeared in space are difficult to classify without manually labeling.Unsupervised rad... With the development of information technology,radio communication technology has made rapid progress.Many radio signals that have appeared in space are difficult to classify without manually labeling.Unsupervised radio signal clustering methods have recently become an urgent need for this situation.Meanwhile,the high complexity of deep learning makes it difficult to understand the decision results of the clustering models,making it essential to conduct interpretable analysis.This paper proposed a combined loss function for unsupervised clustering based on autoencoder.The combined loss function includes reconstruction loss and deep clustering loss.Deep clustering loss is added based on reconstruction loss,which makes similar deep features converge more in feature space.In addition,a features visualization method for signal clustering was proposed to analyze the interpretability of autoencoder utilizing Saliency Map.Extensive experiments have been conducted on a modulated signal dataset,and the results indicate the superior performance of our proposed method over other clustering algorithms.In particular,for the simulated dataset containing six modulation modes,when the SNR is 20dB,the clustering accuracy of the proposed method is greater than 78%.The interpretability analysis of the clustering model was performed to visualize the significant features of different modulated signals and verified the high separability of the features extracted by clustering model. 展开更多
关键词 Unsupervised radio signal clustering Autoencoder Clustering features visualization Deep learning interpretability
在线阅读 下载PDF
An interpretability model for syndrome differentiation of HBV-ACLF in traditional Chinese medicine using small-sample imbalanced data
4
作者 ZHOU Zhan PENG Qinghua +3 位作者 XIAO Xiaoxia ZOU Beiji LIU Bin GUO Shuixia 《Digital Chinese Medicine》 CAS CSCD 2024年第2期137-147,共11页
Objective Clinical medical record data associated with hepatitis B-related acute-on-chronic liver failure(HBV-ACLF)generally have small sample sizes and a class imbalance.However,most machine learning models are desig... Objective Clinical medical record data associated with hepatitis B-related acute-on-chronic liver failure(HBV-ACLF)generally have small sample sizes and a class imbalance.However,most machine learning models are designed based on balanced data and lack interpretability.This study aimed to propose a traditional Chinese medicine(TCM)diagnostic model for HBV-ACLF based on the TCM syndrome differentiation and treatment theory,which is clinically interpretable and highly accurate.Methods We collected medical records from 261 patients diagnosed with HBV-ACLF,including three syndromes:Yang jaundice(214 cases),Yang-Yin jaundice(41 cases),and Yin jaundice(6 cases).To avoid overfitting of the machine learning model,we excluded the cases of Yin jaundice.After data standardization and cleaning,we obtained 255 relevant medical records of Yang jaundice and Yang-Yin jaundice.To address the class imbalance issue,we employed the oversampling method and five machine learning methods,including logistic regression(LR),support vector machine(SVM),decision tree(DT),random forest(RF),and extreme gradient boosting(XGBoost)to construct the syndrome diagnosis models.This study used precision,F1 score,the area under the receiver operating characteristic(ROC)curve(AUC),and accuracy as model evaluation metrics.The model with the best classification performance was selected to extract the diagnostic rule,and its clinical significance was thoroughly analyzed.Furthermore,we proposed a novel multiple-round stable rule extraction(MRSRE)method to obtain a stable rule set of features that can exhibit the model’s clinical interpretability.Results The precision of the five machine learning models built using oversampled balanced data exceeded 0.90.Among these models,the accuracy of RF classification of syndrome types was 0.92,and the mean F1 scores of the two categories of Yang jaundice and Yang-Yin jaundice were 0.93 and 0.94,respectively.Additionally,the AUC was 0.98.The extraction rules of the RF syndrome differentiation model based on the MRSRE method revealed that the common features of Yang jaundice and Yang-Yin jaundice were wiry pulse,yellowing of the urine,skin,and eyes,normal tongue body,healthy sublingual vessel,nausea,oil loathing,and poor appetite.The main features of Yang jaundice were a red tongue body and thickened sublingual vessels,whereas those of Yang-Yin jaundice were a dark tongue body,pale white tongue body,white tongue coating,lack of strength,slippery pulse,light red tongue body,slimy tongue coating,and abdominal distension.This is aligned with the classifications made by TCM experts based on TCM syndrome differentiation and treatment theory.Conclusion Our model can be utilized for differentiating HBV-ACLF syndromes,which has the potential to be applied to generate other clinically interpretable models with high accuracy on clinical data characterized by small sample sizes and a class imbalance. 展开更多
关键词 Traditional Chinese medicine(TCM) Hepatitis B-related acute-on-chronic liver failure(HBV-ACLF) Imbalanced data Random forest(RF) interpretability
在线阅读 下载PDF
Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study
5
作者 Ting-Feng Huang Cong Luo +9 位作者 Luo-Bin Guo Hong-Zhi Liu Jiang-Tao Li Qi-Zhu Lin Rui-Lin Fan Wei-Ping Zhou Jing-Dong Li Ke-Can Lin Shi-Chuan Tang Yong-Yi Zeng 《World Journal of Gastroenterology》 2025年第11期33-45,共13页
BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperat... BACKGROUND To investigate the preoperative factors influencing textbook outcomes(TO)in Intrahepatic cholangiocarcinoma(ICC)patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO,we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations(SHAP)technique to illustrate the prediction process.AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction.METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China,covering the period from 2011 to 2017.Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO.Based on these variables,an EXtreme Gradient Boosting(XGBoost)machine learning prediction model was constructed using the XGBoost package.The SHAP(package:Shapviz)algorithm was employed to visualize each variable's contribution to the model's predictions.Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups.RESULTS Among 376 patients,287 were included in the training group and 89 in the validation group.Logistic regression identified the following preoperative variables influencing TO:Child-Pugh classification,Eastern Cooperative Oncology Group(ECOG)score,hepatitis B,and tumor size.The XGBoost prediction model demonstrated high accuracy in internal validation(AUC=0.8825)and external validation(AUC=0.8346).Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1,2,and 3 years were 64.2%,56.8%,and 43.4%,respectively.CONCLUSION Child-Pugh classification,ECOG score,hepatitis B,and tumor size are preoperative predictors of TO.In both the training group and the validation group,the machine learning model had certain effectiveness in predicting TO before surgery.The SHAP algorithm provided intuitive visualization of the machine learning prediction process,enhancing its interpretability. 展开更多
关键词 Intrahepatic cholangiocarcinoma Textbook outcome interpretable machine learning PREDICTION PROGNOSIS
在线阅读 下载PDF
Interpretation of nursing guidelines for intravenous thrombolysis in acute ischemic stroke
6
作者 Yawei YU Hong GUO +3 位作者 Ling TANG Jie ZHOU Guiying LIU Qingwen GENG 《Journal of Integrative Nursing》 2025年第1期54-61,共8页
The Interpretation of Nursing Guidelines for Intravenous Thrombolysis in Acute Ischemic Stroke offers comprehensive recommendations across five key domains:hospital organizational management,patient condition monitori... The Interpretation of Nursing Guidelines for Intravenous Thrombolysis in Acute Ischemic Stroke offers comprehensive recommendations across five key domains:hospital organizational management,patient condition monitoring,complication observation and management,positioning and mobility away from the bed,and quality assurance.These Guidelines encompass all the phases of intravenous thrombolysis care for patients experiencing acute ischemic stroke.This article aims to elucidate the Guidelines by discussing their developmental background,the designation process,usage recommendations,and the interpretation of evolving perspectives,thereby providing valuable insights for clinical practice. 展开更多
关键词 Acute ischemic stroke GUIDELINE guideline interpretation intravenous thrombolysis
在线阅读 下载PDF
New Trend in Fintech: Research on Artificial Intelligence Model Interpretability in Financial Fields 被引量:1
7
作者 Han Yan Sheng Lin 《Open Journal of Applied Sciences》 2019年第10期761-773,共13页
With the development of Fintech, applying artificial intelligence (AI) technologies to the financial field is a general trend. However, there are some inappropriate conditions, for instance, the AI model is always tre... With the development of Fintech, applying artificial intelligence (AI) technologies to the financial field is a general trend. However, there are some inappropriate conditions, for instance, the AI model is always treated as a black box and cannot be interpreted. This paper studies the AI model interpretability when the models are applied in the financial field. We analyze the reasons of black box problem and explore the effective solutions. We propose a new kind of automatic Regtech tool—LIMER, and put forward policy suggestions, thereby continuously promoting the development of Fintech to a higher level. 展开更多
关键词 Fintech Regtech AI MODEL interpretability LIMER
在线阅读 下载PDF
A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability 被引量:1
8
作者 Zhijie Zhou Zhichao Ming +4 位作者 Jie Wang Shuaiwen Tang You Cao Xiaoxia Han Gang Xiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1165-1185,共21页
Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understan... Fault diagnosis plays an irreplaceable role in the normal operation of equipment.A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model.Due to the understandable knowledge expression and transparent reasoning process,the belief rule base(BRB)has extensive applications as an interpretable expert system in fault diagnosis.Optimization is an effective means to weaken the subjectivity of experts in BRB,where the interpretability of BRB may be weakened.Hence,to obtain a credible result,the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed,which are manifested in deviation from the initial judgement of experts and over-optimization of parameters.For these two factors,three indexes are proposed,namely the consistency index of rules,consistency index of the rule base and over-optimization index,tomeasure the interpretability of the optimizedmodel.Considering both the accuracy and interpretability of amodel,an improved coordinate ascent(I-CA)algorithmis proposed to fine-tune the parameters of the fault diagnosis model based on BRB.In I-CA,the algorithm combined with the advance and retreat method and the golden section method is employed to be one-dimensional search algorithm.Furthermore,the random optimization sequence and adaptive step size are proposed to improve the accuracy of the model.Finally,a case study of fault diagnosis in aerospace relays based on BRB is carried out to verify the effectiveness of the proposed method. 展开更多
关键词 Fault diagnosis belief rule base interpretability weakening factors improved coordinate ascent
在线阅读 下载PDF
RMA-CNN:A Residual Mixed Domain Attention CNN for Bearings Fault Diagnosis and Its Time-Frequency Domain Interpretability 被引量:3
9
作者 Dandan Peng Huan Wang +1 位作者 Wim Desmet Konstantinos Gryllias 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期115-132,共18页
Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varyin... Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,making it more challenging for CNNs to learn discriminative features.Furthermore,CNNs are often considered“black boxes”and lack sufficient interpretability in the fault diagnosis field.To address these issues,this paper introduces a residual mixed domain attention CNN method,referred to as RMA-CNN.This method comprises multiple residual mixed domain attention modules(RMAMs),each employing one attention mechanism to emphasize meaningful features in both time and channel domains.This significantly enhances the network’s ability to learn fault-related features.Moreover,we conduct an in-depth analysis of the inherent feature learning mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis applications.Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks. 展开更多
关键词 attention interpretability CNN fault diagnosis rolling element bearings
在线阅读 下载PDF
An improved deep dilated convolutional neural network for seismic facies interpretation 被引量:1
10
作者 Na-Xia Yang Guo-Fa Li +2 位作者 Ting-Hui Li Dong-Feng Zhao Wei-Wei Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1569-1583,共15页
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network... With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information. 展开更多
关键词 Seismic facies interpretation Dilated convolution Spatial pyramid pooling Internal feature maps Compound loss function
在线阅读 下载PDF
A New Prediction System Based on Self-Growth Belief Rule Base with Interpretability Constraints
11
作者 Yingmei Li Peng Han +3 位作者 Wei He Guangling Zhang Hongwei Wei Boying Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第5期3761-3780,共20页
Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the model... Prediction systems are an important aspect of intelligent decisions.In engineering practice,the complex system structure and the external environment cause many uncertain factors in the model,which influence the modeling accuracy of the model.The belief rule base(BRB)can implement nonlinear modeling and express a variety of uncertain information,including fuzziness,ignorance,randomness,etc.However,the BRB system also has two main problems:Firstly,modeling methods based on expert knowledge make it difficult to guarantee the model’s accuracy.Secondly,interpretability is not considered in the optimization process of current research,resulting in the destruction of the interpretability of BRB.To balance the accuracy and interpretability of the model,a self-growth belief rule basewith interpretability constraints(SBRB-I)is proposed.The reasoning process of the SBRB-I model is based on the evidence reasoning(ER)approach.Moreover,the self-growth learning strategy ensures effective cooperation between the datadriven model and the expert system.A case study showed that the accuracy and interpretability of the model could be guaranteed.The SBRB-I model has good application prospects in prediction systems. 展开更多
关键词 Belief rule base evidence reasoning interpretability optimization prediction system
在线阅读 下载PDF
Improving the Interpretability and Reliability of Regional Land Cover Classification by U-Net Using Remote Sensing Data
12
作者 WANG Xinshuang CAO Jiancheng +4 位作者 LIU Jiange LI Xiangwu WANG Lu ZUO Feihang BAI Mu 《Chinese Geographical Science》 SCIE CSCD 2022年第6期979-994,共16页
The accurate and reliable interpretation of regional land cover data is very important for natural resource monitoring and environmental assessment.At present,refined land cover data are mainly obtained by manual visu... The accurate and reliable interpretation of regional land cover data is very important for natural resource monitoring and environmental assessment.At present,refined land cover data are mainly obtained by manual visual interpretation,which has the problems of heavy workload and inconsistent interpretation scales.Deep learning has greatly improved the automatic processing and analysis of remote sensing data.However,the accurate interpretation of feature information from massive datasets remains a difficult problem in wide regional land cover classification.To improve the efficiency of deep learning-based remote sensing image interpretation,we selected multisource remote sensing data,assessed the interpretability of the U-Net model based on surface spatial scenes with different levels of complexity,and proposed a new method of stereoscopic accuracy verification(SAV)to evaluate the reliability of the classification result.The results show that classification accuracy is more highly correlated with terrain and landscape than with other factors related to image data,such as platform and spatial resolution.As the complexity of surface spatial scenes increases,the accuracy of the classification results mainly shows a fluctuating declining trend.We also find the distribution characteristics from the SAV evaluation results of different land cover types in each surface spatial scene.Based on the results observed in this study,we consider the distinction of interpretability and reliability in diverse ground object types and design targeted classification strategies for different surface scenes,which can greatly improve the classification efficiency.The key achievement of this study is to provide the theoretical basis for remote sensing information analysis and an accuracy evaluation method for regional land cover classification,and the proposed method can help improve the likelihood that intelligent interpretation can replace manual acquisition. 展开更多
关键词 land cover classification stereoscopic accuracy verification U-Net remote sensing interpretability RELIABILITY
在线阅读 下载PDF
Model-based interpretation of bottomhole pressure records during matrix treatments in layered formations
13
作者 Igor Reznikov Dmitry Abdrazakov Dimitry Chuprakov 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3587-3611,共25页
During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval w... During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment. 展开更多
关键词 Matrix treatment Inverse problem Forward problem Skin factor interpretATION
在线阅读 下载PDF
Hyperspectral Image Based Interpretable Feature Clustering Algorithm
14
作者 Yaming Kang PeishunYe +1 位作者 Yuxiu Bai Shi Qiu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2151-2168,共18页
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy... Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81. 展开更多
关键词 HYPERSPECTRAL fuzzy clustering tissue P system band selection interpretable
在线阅读 下载PDF
Directly predicting N_(2) electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features
15
作者 Yaqin Zhang Yuhang Wang +1 位作者 Ninggui Ma Jun Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期139-148,I0004,共11页
Electrocatalytic nitrogen reduction to ammonia has garnered significant attention with the blooming of single-atom catalysts(SACs),showcasing their potential for sustainable and energy-efficient ammonia production.How... Electrocatalytic nitrogen reduction to ammonia has garnered significant attention with the blooming of single-atom catalysts(SACs),showcasing their potential for sustainable and energy-efficient ammonia production.However,cost-effectively designing and screening efficient electrocatalysts remains a challenge.In this study,we have successfully established interpretable machine learning(ML)models to evaluate the catalytic activity of SACs by directly and accurately predicting reaction Gibbs free energy.Our models were trained using non-density functional theory(DFT)calculated features from a dataset comprising 90 graphene-supported SACs.Our results underscore the superior prediction accuracy of the gradient boosting regression(GBR)model for bothΔg(N_(2)→NNH)andΔG(NH_(2)→NH_(3)),boasting coefficient of determination(R^(2))score of 0.972 and 0.984,along with root mean square error(RMSE)of 0.051 and 0.085 eV,respectively.Moreover,feature importance analysis elucidates that the high accuracy of GBR model stems from its adept capture of characteristics pertinent to the active center and coordination environment,unveilling the significance of elementary descriptors,with the colvalent radius playing a dominant role.Additionally,Shapley additive explanations(SHAP)analysis provides global and local interpretation of the working mechanism of the GBR model.Our analysis identifies that a pyrrole-type coordination(flag=0),d-orbitals with a moderate occupation(N_(d)=5),and a moderate difference in covalent radius(r_(TM-ave)near 140 pm)are conducive to achieving high activity.Furthermore,we extend the prediction of activity to more catalysts without additional DFT calculations,validating the reliability of our feature engineering,model training,and design strategy.These findings not only highlight new opportunity for accelerating catalyst design using non-DFT calculated features,but also shed light on the working mechanism of"black box"ML model.Moreover,the model provides valuable guidance for catalytic material design in multiple proton-electron coupling reactions,particularly in driving sustainable CO_(2),O_(2),and N_(2) conversion. 展开更多
关键词 Nitrogen reduction Single-atom catalyst interpretable machine learning Graphene Non-DFT features
在线阅读 下载PDF
Intelligent geochemical interpretation of mass chromatograms:Based on convolution neural network
16
作者 Kai-Ming Su Jun-Gang Lu +2 位作者 Jian Yu Zi-Xing Lu Shi-Jia Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期752-764,共13页
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide... Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies. 展开更多
关键词 Organic geochemistry BIOMARKER Mass chromatographic analysis Automated interpretation Convolution neural network Machine learning
在线阅读 下载PDF
Sci-tech Simultaneous Interpreter Education Based on Translation Universals Research
17
作者 JI Mengqi JI Xiaowen 《Sino-US English Teaching》 2024年第9期443-448,共6页
The rapid evolution of scientific and technological advancements and industrial changes has profoundly interconnected countries and regions in the digital information era,creating a globalized environment where effect... The rapid evolution of scientific and technological advancements and industrial changes has profoundly interconnected countries and regions in the digital information era,creating a globalized environment where effective communication is paramount.Consequently,the demand for proficient interpreting skills within the scientific and technology sectors has surged,making effective language communication increasingly crucial.This paper explores the potential impact of translation universals on enhancing sci-tech simultaneous interpreter education.By examining the selection of teaching materials,methods,and activities through the lens of translation universals,this study aims to improve the quality of teaching content,innovate instructional approaches,and ultimately,enhance the effectiveness of interpreter education.The findings of this research are expected to provide valuable insights for curriculum development and pedagogical strategies in interpreter education. 展开更多
关键词 simultaneous interpreting translation universals interpreter education sci-tech interpreting
在线阅读 下载PDF
Angular unconformity in Pennsylvanian strata from 3-D seismic interpretation,Goldsmith Field,West Texas
18
作者 Edwin I.Egbobawaye Nelly Omoruyi +3 位作者 Abdulmutallib Aminu Robert Trentham Mohamed K.Zobaa Sumit Verma 《Energy Geoscience》 EI 2024年第2期298-303,共6页
The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformi... The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodology utilized in this study is a further step in the characterization of reservoirs and can be used to expand our knowledge and obtain more information about the Goldsmith Field. 展开更多
关键词 Pennsylvanian unconformity Seismic data interpretation Spectral decomposition Reflector convergence Reservoir characterization
在线阅读 下载PDF
Accountable capability improvement based on interpretable capability evaluation using belief rule base
19
作者 LI Xuan JIANG Jiang +2 位作者 SUN Jianbin YU Haiyue CHANG Leilei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1231-1244,共14页
A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt... A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach. 展开更多
关键词 accountable capability improvement interpretable capability evaluation belief rule base(BRB).
在线阅读 下载PDF
Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems
20
作者 Xia Li Zhanyou Ma +3 位作者 Zhibao Mian Ziyuan Liu Ruiqi Huang Nana He 《Computers, Materials & Continua》 SCIE EI 2024年第3期4129-4152,共24页
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s... Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system. 展开更多
关键词 Model checking multi-agent systems fuzzy epistemic interpreted systems fuzzy computation tree logic transformation algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部