Posttranslational modifications are a class of important cellular activities in various bio-chemical processes including signalling trans-duction, gene/metabolite networks, and disease development. It has been found t...Posttranslational modifications are a class of important cellular activities in various bio-chemical processes including signalling trans-duction, gene/metabolite networks, and disease development. It has been found that multiple posttranslational modifications with the same or different modification residues can co-exist in the same protein and this co-occurrence is critical to signalling networks in cells. Although some biological studies have spotted this phe-nomenon, little bioinformatics study has been carried out for understanding its mechanism. Four data sets were downloaded from NCBI for the study. The joint probabilities of any two neighbouring posttranslational modification sites of different modification residues were analyzed. The Bayesian probabilistic network was derived for visualizing the relationship be-tween a target modification and the contributing modifications as the predictive factors.展开更多
Leptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira that infects humans and a wide range of animals. By combining computational prediction and high-accuracy tandem m...Leptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira that infects humans and a wide range of animals. By combining computational prediction and high-accuracy tandem mass spectra, we revised the genome annotation of Leptospira interrogans serovar Lai, a free-living pathogenic spirochete responsible for leptospirosis, providing substantial peptide evidence for novel genes and new gene boundaries. Subsequently, we presented a high-coverage proteome analysis of protein expression and multiple posttranslational modifications (PTMs). Approximately 64.3% of the predicted L. interrogans proteins were cataloged by detecting 2 540 proteins. Meanwhile, a profile of multiple PTMs was concurrently established, containing in total 32 phosphorylated, 46 acetylated and 155 methylated proteins. The PTM systems in the serovar Lai show unique features. Unique eukaryotic-like features of L. interrogans protein modifications were demonstrated in both phosphorylation and arginine methylation. This systematic analysis provides not only comprehensive information of high-coverage protein expression and multiple modifications in prokaryotes but also a view suggesting that the evolutionarily primitive L. interrogans shares significant similarities in protein modification systems with eukaryotes.展开更多
Prostate cancer(PCa)is the most commonly diagnosed cancer among men in western countries.Androgen receptor(AR)signaling plays key roles in the development of PCa.Androgen deprivation therapy(ADT)remains the standard t...Prostate cancer(PCa)is the most commonly diagnosed cancer among men in western countries.Androgen receptor(AR)signaling plays key roles in the development of PCa.Androgen deprivation therapy(ADT)remains the standard therapy for advanced PCa.In addition to its ligand androgen,accumulating evidence indicates that posttranscriptional modification is another important mechanism to regulate AR activities during the progression of PCa,especially in castration resistant prostate cancer(CRPC).To date,a number of posttranscriptional modifications of AR have been identified,including phosphorylation(e.g.by CDK1),acetylation(e.g.by p300 and recognized by BRD4),methylation(e.g.by EZH2),ubiquitination(e.g.by SPOP),and SUMOylation(e.g.by PIAS1).These modifications are essential for the maintenance of protein stability,nuclear localization and transcriptional activity of AR.This review summarizes posttranslational modifications that influence androgen-dependent and-independent activities of AR,PCa progression and therapy resistance.We further emphasize that in addition to androgen,posttranslational modification is another important way to regulate AR activity,suggesting that targeting AR posttranslational modifications,such as proteolysis targeting chimeras(PROTACs)of AR,represents a potential and promising alternate for effective treatment of CRPC.Potential areas to be investigated in the future in the field of AR posttranslational modifications are also discussed.展开更多
Posttranslational modifications of antibody products affect their stability,charge distribution,and drug activity and are thus a critical quality attribute.The comprehensive mapping of antibody modifications and diffe...Posttranslational modifications of antibody products affect their stability,charge distribution,and drug activity and are thus a critical quality attribute.The comprehensive mapping of antibody modifications and different charge isomers(CIs)is of utmost importance,but is challenging.We intended to quantitatively characterize the posttranslational modification status of CIs of antibody drugs and explore the impact of posttranslational modifications on charge heterogeneity.The CIs of antibodies were fractionated by strong cation exchange chromatography and verified by capillary isoelectric focusing-whole column imaging detection,followed by stepwise structural characterization at three levels.First,the differences between CIs were explored at the intact protein level using a top-down mass spectrometry approach;this showed differences in glycoforms and deamidation status.Second,at the peptide level,common modifications of oxidation,deamidation,and glycosylation were identified.Peptide mapping showed nonuniform deamidation and glycoform distribution among CIs.In total,10 N-glycoforms were detected by peptide mapping.Finally,an in-depth analysis of glycan variants of CIs was performed through the detection of enriched glycopeptides.Qualitative and quantitative analyses demonstrated the dynamics of 24 N-glycoforms.The results revealed that sialic acid modification is a critical factor accounting for charge heterogeneity,which is otherwise missed in peptide mapping and intact molecular weight analyses.This study demonstrated the importance of the comprehensive analyses of antibody CIs and provides a reference method for the quality control of biopharmaceutical analysis.展开更多
文摘Posttranslational modifications are a class of important cellular activities in various bio-chemical processes including signalling trans-duction, gene/metabolite networks, and disease development. It has been found that multiple posttranslational modifications with the same or different modification residues can co-exist in the same protein and this co-occurrence is critical to signalling networks in cells. Although some biological studies have spotted this phe-nomenon, little bioinformatics study has been carried out for understanding its mechanism. Four data sets were downloaded from NCBI for the study. The joint probabilities of any two neighbouring posttranslational modification sites of different modification residues were analyzed. The Bayesian probabilistic network was derived for visualizing the relationship be-tween a target modification and the contributing modifications as the predictive factors.
文摘Leptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira that infects humans and a wide range of animals. By combining computational prediction and high-accuracy tandem mass spectra, we revised the genome annotation of Leptospira interrogans serovar Lai, a free-living pathogenic spirochete responsible for leptospirosis, providing substantial peptide evidence for novel genes and new gene boundaries. Subsequently, we presented a high-coverage proteome analysis of protein expression and multiple posttranslational modifications (PTMs). Approximately 64.3% of the predicted L. interrogans proteins were cataloged by detecting 2 540 proteins. Meanwhile, a profile of multiple PTMs was concurrently established, containing in total 32 phosphorylated, 46 acetylated and 155 methylated proteins. The PTM systems in the serovar Lai show unique features. Unique eukaryotic-like features of L. interrogans protein modifications were demonstrated in both phosphorylation and arginine methylation. This systematic analysis provides not only comprehensive information of high-coverage protein expression and multiple modifications in prokaryotes but also a view suggesting that the evolutionarily primitive L. interrogans shares significant similarities in protein modification systems with eukaryotes.
基金supported by Mayo Clinic Foundation(MC-HH999 to Haojie Huang).
文摘Prostate cancer(PCa)is the most commonly diagnosed cancer among men in western countries.Androgen receptor(AR)signaling plays key roles in the development of PCa.Androgen deprivation therapy(ADT)remains the standard therapy for advanced PCa.In addition to its ligand androgen,accumulating evidence indicates that posttranscriptional modification is another important mechanism to regulate AR activities during the progression of PCa,especially in castration resistant prostate cancer(CRPC).To date,a number of posttranscriptional modifications of AR have been identified,including phosphorylation(e.g.by CDK1),acetylation(e.g.by p300 and recognized by BRD4),methylation(e.g.by EZH2),ubiquitination(e.g.by SPOP),and SUMOylation(e.g.by PIAS1).These modifications are essential for the maintenance of protein stability,nuclear localization and transcriptional activity of AR.This review summarizes posttranslational modifications that influence androgen-dependent and-independent activities of AR,PCa progression and therapy resistance.We further emphasize that in addition to androgen,posttranslational modification is another important way to regulate AR activity,suggesting that targeting AR posttranslational modifications,such as proteolysis targeting chimeras(PROTACs)of AR,represents a potential and promising alternate for effective treatment of CRPC.Potential areas to be investigated in the future in the field of AR posttranslational modifications are also discussed.
基金the financial support from the National Key Program for Basic Research of China(Grant Nos.:2018YFC0910302 and 2017YFF0205400)the National Natural Science Foundation of China(Grant No.:81530021)Innovation Foundation of Medicine(Grant Nos.:BWS14J052 and 16CXZ027)
文摘Posttranslational modifications of antibody products affect their stability,charge distribution,and drug activity and are thus a critical quality attribute.The comprehensive mapping of antibody modifications and different charge isomers(CIs)is of utmost importance,but is challenging.We intended to quantitatively characterize the posttranslational modification status of CIs of antibody drugs and explore the impact of posttranslational modifications on charge heterogeneity.The CIs of antibodies were fractionated by strong cation exchange chromatography and verified by capillary isoelectric focusing-whole column imaging detection,followed by stepwise structural characterization at three levels.First,the differences between CIs were explored at the intact protein level using a top-down mass spectrometry approach;this showed differences in glycoforms and deamidation status.Second,at the peptide level,common modifications of oxidation,deamidation,and glycosylation were identified.Peptide mapping showed nonuniform deamidation and glycoform distribution among CIs.In total,10 N-glycoforms were detected by peptide mapping.Finally,an in-depth analysis of glycan variants of CIs was performed through the detection of enriched glycopeptides.Qualitative and quantitative analyses demonstrated the dynamics of 24 N-glycoforms.The results revealed that sialic acid modification is a critical factor accounting for charge heterogeneity,which is otherwise missed in peptide mapping and intact molecular weight analyses.This study demonstrated the importance of the comprehensive analyses of antibody CIs and provides a reference method for the quality control of biopharmaceutical analysis.